Scalable synthesis, characterization and testing of 3D architected gyroid graphene lattices from additively manufactured templates

Q3 Engineering
Juveiriah M. Ashraf, Jing Fu, K. Liao, V. Chan, R. Al-Rub
{"title":"Scalable synthesis, characterization and testing of 3D architected gyroid graphene lattices from additively manufactured templates","authors":"Juveiriah M. Ashraf, Jing Fu, K. Liao, V. Chan, R. Al-Rub","doi":"10.1142/s2424913021430025","DOIUrl":null,"url":null,"abstract":"We have developed a novel, facile and architecturally versatile fabrication method for specially designed cellular graphene lattices using additively manufactured polymer-based gyroidal triply periodic minimal surface (TPMS) as the initial sacrificial scaffold. Three-dimensional (3D)-printed templates of the polymeric gyroid lattices were coated with a mixture of graphene oxide (GO) and hydrazine solution via the hydrothermal process, followed by drying and thermal etching of the polymer scaffold, which resulted in a neat reduced GO (rGO) lattice of the gyroidal TPMS structure. Scanning electron microscopy and micro-computed tomography were used to evaluate the morphology and size of the 3D rGO architectures, while a Raman response at 1360[Formula: see text]cm[Formula: see text] (D peak), 1589[Formula: see text]cm[Formula: see text] (G peak) and 2696[Formula: see text]cm[Formula: see text] (2D peak) verified the presence of rGO. Thermo–electro–mechanical properties of rGO gyroid lattices of different densities were characterized where the highest Young’s modulus recorded was 351[Formula: see text]kPa for a sample with a density of 45.9[Formula: see text]mg[Formula: see text][Formula: see text][Formula: see text]cm[Formula: see text]. The rGO gyroid lattice exhibits an electrical conductivity of 1.07[Formula: see text]S[Formula: see text][Formula: see text][Formula: see text]m[Formula: see text] and high thermal insulation property with a thermal conductivity of 0.102[Formula: see text]W[Formula: see text][Formula: see text][Formula: see text]m[Formula: see text][Formula: see text]K[Formula: see text]. It is demonstrated that the hydrothermal-assisted fabrication process is adaptable for different lattice architectures based on 3D-printed scaffolds and thus has wide functional applications.","PeriodicalId":36070,"journal":{"name":"Journal of Micromechanics and Molecular Physics","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Micromechanics and Molecular Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s2424913021430025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 2

Abstract

We have developed a novel, facile and architecturally versatile fabrication method for specially designed cellular graphene lattices using additively manufactured polymer-based gyroidal triply periodic minimal surface (TPMS) as the initial sacrificial scaffold. Three-dimensional (3D)-printed templates of the polymeric gyroid lattices were coated with a mixture of graphene oxide (GO) and hydrazine solution via the hydrothermal process, followed by drying and thermal etching of the polymer scaffold, which resulted in a neat reduced GO (rGO) lattice of the gyroidal TPMS structure. Scanning electron microscopy and micro-computed tomography were used to evaluate the morphology and size of the 3D rGO architectures, while a Raman response at 1360[Formula: see text]cm[Formula: see text] (D peak), 1589[Formula: see text]cm[Formula: see text] (G peak) and 2696[Formula: see text]cm[Formula: see text] (2D peak) verified the presence of rGO. Thermo–electro–mechanical properties of rGO gyroid lattices of different densities were characterized where the highest Young’s modulus recorded was 351[Formula: see text]kPa for a sample with a density of 45.9[Formula: see text]mg[Formula: see text][Formula: see text][Formula: see text]cm[Formula: see text]. The rGO gyroid lattice exhibits an electrical conductivity of 1.07[Formula: see text]S[Formula: see text][Formula: see text][Formula: see text]m[Formula: see text] and high thermal insulation property with a thermal conductivity of 0.102[Formula: see text]W[Formula: see text][Formula: see text][Formula: see text]m[Formula: see text][Formula: see text]K[Formula: see text]. It is demonstrated that the hydrothermal-assisted fabrication process is adaptable for different lattice architectures based on 3D-printed scaffolds and thus has wide functional applications.
从增材制造模板可扩展合成、表征和测试3D结构旋转石墨烯晶格
我们开发了一种新颖、简便、结构多样的制造方法,用于特殊设计的细胞石墨烯晶格,使用增材制造的基于聚合物的陀螺三周期最小表面(TPMS)作为初始牺牲支架。通过水热工艺将三维(3D)打印的聚合物陀螺晶格模板涂覆在氧化石墨烯(GO)和肼溶液的混合物上,然后对聚合物支架进行干燥和热蚀刻,从而得到了陀螺状TPMS结构的整齐还原的GO (rGO)晶格。利用扫描电子显微镜和微型计算机断层扫描来评估三维rGO结构的形态和大小,而1360[公式:见文]cm[公式:见文](D峰),1589[公式:见文]cm[公式:见文](G峰)和2696[公式:见文]cm[公式:见文](2D峰)的拉曼响应证实了rGO的存在。对不同密度的氧化石墨烯(rGO)陀螺晶格的热-电-机械性能进行了表征,在密度为45.9的样品中,记录到的最高杨氏模量为351[公式:见文]kPa[公式:见文]mg[公式:见文][公式:见文][公式:见文]cm[公式:见文]。rGO陀螺晶格的电导率为1.07[公式:见文]S[公式:见文][公式:见文][公式:见文]m[公式:见文][公式:见文]导热系数为0.102[公式:见文]W[公式:见文][公式:见文][公式:见文]m[公式:见文][公式:见文]K[公式:见文]。结果表明,基于3d打印支架的水热辅助制造工艺适用于不同晶格结构,具有广泛的功能应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Micromechanics and Molecular Physics
Journal of Micromechanics and Molecular Physics Materials Science-Polymers and Plastics
CiteScore
3.30
自引率
0.00%
发文量
27
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信