The SLE loop via conformal welding of quantum disks

IF 1.3 3区 数学 Q2 STATISTICS & PROBABILITY
M. Ang, N. Holden, Xin Sun
{"title":"The SLE loop via conformal welding of quantum disks","authors":"M. Ang, N. Holden, Xin Sun","doi":"10.1214/23-ejp914","DOIUrl":null,"url":null,"abstract":"We prove that the SLE$_\\kappa$ loop measure arises naturally from the conformal welding of two $\\gamma$-Liouville quantum gravity (LQG) disks for $\\gamma^2 = \\kappa \\in (0,4)$. The proof relies on our companion work on conformal welding of LQG disks and uses as an essential tool the concept of uniform embedding of LQG surfaces. Combining our result with work of Gwynne and Miller, we get that random quadrangulations decorated by a self-avoiding polygon converge in the scaling limit to the LQG sphere decorated by the SLE$_{8/3}$ loop. Our result is also a key input to recent work of the first and third coauthors on the integrability of the conformal loop ensemble.","PeriodicalId":50538,"journal":{"name":"Electronic Journal of Probability","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2022-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Probability","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/23-ejp914","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 4

Abstract

We prove that the SLE$_\kappa$ loop measure arises naturally from the conformal welding of two $\gamma$-Liouville quantum gravity (LQG) disks for $\gamma^2 = \kappa \in (0,4)$. The proof relies on our companion work on conformal welding of LQG disks and uses as an essential tool the concept of uniform embedding of LQG surfaces. Combining our result with work of Gwynne and Miller, we get that random quadrangulations decorated by a self-avoiding polygon converge in the scaling limit to the LQG sphere decorated by the SLE$_{8/3}$ loop. Our result is also a key input to recent work of the first and third coauthors on the integrability of the conformal loop ensemble.
量子盘保角焊接的SLE环
我们证明了SLE$_\kappa$环测度是由两个$\gamma$-Liouville量子重力(LQG)圆盘对$\gamma ^2=\kappa\in(0.4)$的保角焊接自然产生的。该证明依赖于我们关于LQG圆盘保形焊接的配套工作,并使用LQG表面均匀嵌入的概念作为基本工具。将我们的结果与Gwynne和Miller的工作相结合,我们得到了由自回避多边形装饰的随机四边形在由SLE$_{8/3}$环装饰的LQG球面的标度极限上收敛。我们的结果也是第一和第三合著者最近关于共形环系综可积性的工作的关键输入。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Electronic Journal of Probability
Electronic Journal of Probability 数学-统计学与概率论
CiteScore
1.80
自引率
7.10%
发文量
119
审稿时长
4-8 weeks
期刊介绍: The Electronic Journal of Probability publishes full-size research articles in probability theory. The Electronic Communications in Probability (ECP), a sister journal of EJP, publishes short notes and research announcements in probability theory. Both ECP and EJP are official journals of the Institute of Mathematical Statistics and the Bernoulli society.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信