Matěj Vodička, Kristýna Michaliková, J. Hrdlička, Pavel Skopec, Jitka Jeníková
{"title":"Experimental verification of the impact of the air staging on the NOx production and on the temperature profile in a BFB","authors":"Matěj Vodička, Kristýna Michaliková, J. Hrdlička, Pavel Skopec, Jitka Jeníková","doi":"10.14311/ap.2022.62.0400","DOIUrl":null,"url":null,"abstract":"The results of an experimental research on air staging in a bubbling fluidized bed (BFB) combustor are presented within this paper. Air staging is known as an effective primary measure to reduce NOX formation. However, in the case of a number of industrial BFB units, it does not have to be sufficient to meet the emission standards. Then selective non-catalytic reduction (SNCR) can be a cost-effective option for further reduction of the already formed NOX. The required temperature range at the place of the reducing agent injection for an effective application of the SNCR without excessive ammonia slip is above the temperatures normally attained in BFBs. The aim of this paper is to evaluate the impact of staged air injection on the formation of NOX in BFB combustors and to examine the possibility of increasing the freeboard temperature. Several experiments with various secondary/primary air ratios were performed with a constant oxygen concentration in the flue gas. The experiments were carried out using wooden biomass and lignite as fuel in a 30 kWth laboratory scale BFB combustor. Furthermore, the results were verified using a 500 kWth pilot scale BFB unit. The results confirmed that the air staging can effectively move the dominant combustion zone from the dense bed to the freeboard section, and thus the temperatures for an effective application of the SNCR can be obtained.","PeriodicalId":45804,"journal":{"name":"Acta Polytechnica","volume":" ","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2022-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Polytechnica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14311/ap.2022.62.0400","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The results of an experimental research on air staging in a bubbling fluidized bed (BFB) combustor are presented within this paper. Air staging is known as an effective primary measure to reduce NOX formation. However, in the case of a number of industrial BFB units, it does not have to be sufficient to meet the emission standards. Then selective non-catalytic reduction (SNCR) can be a cost-effective option for further reduction of the already formed NOX. The required temperature range at the place of the reducing agent injection for an effective application of the SNCR without excessive ammonia slip is above the temperatures normally attained in BFBs. The aim of this paper is to evaluate the impact of staged air injection on the formation of NOX in BFB combustors and to examine the possibility of increasing the freeboard temperature. Several experiments with various secondary/primary air ratios were performed with a constant oxygen concentration in the flue gas. The experiments were carried out using wooden biomass and lignite as fuel in a 30 kWth laboratory scale BFB combustor. Furthermore, the results were verified using a 500 kWth pilot scale BFB unit. The results confirmed that the air staging can effectively move the dominant combustion zone from the dense bed to the freeboard section, and thus the temperatures for an effective application of the SNCR can be obtained.
期刊介绍:
Acta Polytechnica is a scientific journal published by CTU in Prague. The main title, Acta Polytechnica, is accompanied by the subtitle Journal of Advanced Engineering, which defines the scope of the journal more precisely - Acta Polytechnica covers a wide spectrum of engineering topics, physics and mathematics. Our aim is to be a high-quality multi-disciplinary journal publishing the results of basic research and also applied research. We place emphasis on the quality of all published papers. The journal should also serve as a bridge between basic research in natural sciences and applied research in all technical disciplines. The innovative research results published by young researchers or by postdoctoral fellows, and also the high-quality papers by researchers from the international scientific community, reflect the good position of CTU in the World University Rankings. We hope that you will find our journal interesting, and that it will serve as a valuable source of scientific information.