Zongqi Wang, Chengyuan Ji, Qingdong Han, Zhong Wang, Yabo Huang
{"title":"Data-Independent Acquisition-Based Serum Proteomic Profiling of Adult Moyamoya Disease Patients Reveals the Potential Pathogenesis of Vascular Changes","authors":"Zongqi Wang, Chengyuan Ji, Qingdong Han, Zhong Wang, Yabo Huang","doi":"10.1007/s12031-022-02092-w","DOIUrl":null,"url":null,"abstract":"<div><p>Moyamoya disease (MMD) is a chronic cerebrovascular disease with unknown etiology. The pathogenesis of vascular changes remains unclear. Ischemic and hemorrhagic adult MMD patients and healthy volunteers were enrolled to collect serum for data-independent acquisition (DIA)-based proteomic analysis and ELISA validation. DIA serum proteomic revealed that apolipoprotein C-I (APOC1), apolipoprotein D (APOD), and apolipoprotein A-IV (APOA4) were decreased. The reductases glutathione S-transferase omega-1 (GSTO1) and peptidyl-prolyl cis–trans isomerase A (PPIA) were upregulated, and ADAMTS-like protein 4 (ADAMTSL4) was downregulated in both ischemic and hemorrhagic MMD. Afamin (AFM) and transforming growth factor-beta-induced protein ig-h3 (TGFBI) increased in ischemic patients but decreased in hemorrhagic patients. Serum ELISA results confirmed that APOA4, APOC1, and APOD were decreased compared to controls. Then, we retrospectively analyzed biochemical indexes of 200 MMD patients. A total of 54 enrolled MMD patients showed decreased total cholesterol (TC) and high-density lipoprotein cholesterol (HDL-c). APOA4, APOC1, and APOD were vital factors in the HDL decrease in MMD patients. Lipoprotein dysfunction in MMD patients is involved in MMD. Intimal thickening by enhanced adhesion, middle layer vascular smooth muscle cell migration, and decreased lipid antioxidant function represented by HDL are potential pathogeneses of vascular changes in MMD.</p></div>","PeriodicalId":652,"journal":{"name":"Journal of Molecular Neuroscience","volume":"72 12","pages":"2473 - 2485"},"PeriodicalIF":2.8000,"publicationDate":"2022-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://link.springer.com/article/10.1007/s12031-022-02092-w","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Moyamoya disease (MMD) is a chronic cerebrovascular disease with unknown etiology. The pathogenesis of vascular changes remains unclear. Ischemic and hemorrhagic adult MMD patients and healthy volunteers were enrolled to collect serum for data-independent acquisition (DIA)-based proteomic analysis and ELISA validation. DIA serum proteomic revealed that apolipoprotein C-I (APOC1), apolipoprotein D (APOD), and apolipoprotein A-IV (APOA4) were decreased. The reductases glutathione S-transferase omega-1 (GSTO1) and peptidyl-prolyl cis–trans isomerase A (PPIA) were upregulated, and ADAMTS-like protein 4 (ADAMTSL4) was downregulated in both ischemic and hemorrhagic MMD. Afamin (AFM) and transforming growth factor-beta-induced protein ig-h3 (TGFBI) increased in ischemic patients but decreased in hemorrhagic patients. Serum ELISA results confirmed that APOA4, APOC1, and APOD were decreased compared to controls. Then, we retrospectively analyzed biochemical indexes of 200 MMD patients. A total of 54 enrolled MMD patients showed decreased total cholesterol (TC) and high-density lipoprotein cholesterol (HDL-c). APOA4, APOC1, and APOD were vital factors in the HDL decrease in MMD patients. Lipoprotein dysfunction in MMD patients is involved in MMD. Intimal thickening by enhanced adhesion, middle layer vascular smooth muscle cell migration, and decreased lipid antioxidant function represented by HDL are potential pathogeneses of vascular changes in MMD.
期刊介绍:
The Journal of Molecular Neuroscience is committed to the rapid publication of original findings that increase our understanding of the molecular structure, function, and development of the nervous system. The criteria for acceptance of manuscripts will be scientific excellence, originality, and relevance to the field of molecular neuroscience. Manuscripts with clinical relevance are especially encouraged since the journal seeks to provide a means for accelerating the progression of basic research findings toward clinical utilization. All experiments described in the Journal of Molecular Neuroscience that involve the use of animal or human subjects must have been approved by the appropriate institutional review committee and conform to accepted ethical standards.