Existence results on impulsive stochastic semilinear differential inclusions

IF 0.2 Q4 MATHEMATICS, APPLIED
Mustapha Meghnafi, M. Hammami, T. Blouhi
{"title":"Existence results on impulsive stochastic semilinear differential inclusions","authors":"Mustapha Meghnafi, M. Hammami, T. Blouhi","doi":"10.1504/IJDSDE.2021.10037985","DOIUrl":null,"url":null,"abstract":"In this paper, we present some existence results of mild solutions and study the topological structure of solution sets for the following first-order impulsive stochastic semilinear differential inclusions driven by Poisson jumps with periodic boundary conditions.We consider the cases in which the right hand side can be either convex . The results are obtained by using fixed point theorems for multivalued mappings, more precisely, the technique is based on fixed point theorem a nonlinear alternative of Leray-Schauder's fixed point theorem in generalised metric and Banach spaces.","PeriodicalId":43101,"journal":{"name":"International Journal of Dynamical Systems and Differential Equations","volume":" ","pages":""},"PeriodicalIF":0.2000,"publicationDate":"2021-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Dynamical Systems and Differential Equations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJDSDE.2021.10037985","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we present some existence results of mild solutions and study the topological structure of solution sets for the following first-order impulsive stochastic semilinear differential inclusions driven by Poisson jumps with periodic boundary conditions.We consider the cases in which the right hand side can be either convex . The results are obtained by using fixed point theorems for multivalued mappings, more precisely, the technique is based on fixed point theorem a nonlinear alternative of Leray-Schauder's fixed point theorem in generalised metric and Banach spaces.
脉冲随机双线性微分包含的存在性结果
本文给出了具有周期边界条件的Poisson跳跃驱动的一阶脉冲随机双线性微分包含的一些温和解的存在性结果,并研究了解集的拓扑结构。我们考虑右手边可以是凸的情况。这些结果是利用多值映射的不动点定理得到的,更确切地说,该技术是基于不动点定理——广义度量和Banach空间中Leray Schauder不动点定理的非线性替代。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.80
自引率
0.00%
发文量
16
期刊介绍: IJDSDE is a quarterly international journal that publishes original research papers of high quality in all areas related to dynamical systems and differential equations and their applications in biology, economics, engineering, physics, and other related areas of science. Manuscripts concerned with the development and application innovative mathematical tools and methods from dynamical systems and differential equations, are encouraged.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信