Early Fault Detection in Particle Accelerator Power Electronics Using Ensemble Learning

IF 1.4 Q2 ENGINEERING, MULTIDISCIPLINARY
M. Radaideh, C. Pappas, M. Wezensky, P. Ramuhalli, Sarah Cousineau
{"title":"Early Fault Detection in Particle Accelerator Power Electronics Using Ensemble Learning","authors":"M. Radaideh, C. Pappas, M. Wezensky, P. Ramuhalli, Sarah Cousineau","doi":"10.36001/ijphm.2023.v14i1.3419","DOIUrl":null,"url":null,"abstract":"Early fault detection and fault prognosis are crucial to ensure efficient and safe operations of complex engineering systems such as the Spallation Neutron Source (SNS) and its power electronics (high voltage converter modulators). Following an advanced experimental facility setup that mimics SNS operating conditions, the authors successfully conducted 21 early fault detection experiments, where fault precursors are introduced in the system to a degree enough to cause degradation in the waveform signals, but not enough to reach a real fault. Nine different machine learning techniques based on ensemble trees, convolutional neural networks, support vector machines, and hierarchical voting ensembles are proposed to detect the fault precursors. Although all 9 models have shown a perfect and identical performance during the training and testing phase, the performance of most models has decreased in the next test phase once they got exposed to realworld data from the 21 experiments. The hierarchical voting ensemble, which features multiple layers of diverse models, maintains a distinguished performance in early detection of the fault precursors with 95% success rate (20/21 tests), followed by adaboost and extremely randomized trees with 52% and 48% success rates, respectively. The support vector machine models were the worst with only 24% success rate (5/21 tests). The study concluded that a successful implementation of machine learning in the SNS or particle accelerator power systems would require a major upgrade in the controller and the data acquisition system to facilitate streaming and handling big data for the machine learning models. In addition, this study shows that the best performing models were diverse and based on the ensemble concept to reduce the bias and hyperparameter sensitivity of individual models.","PeriodicalId":42100,"journal":{"name":"International Journal of Prognostics and Health Management","volume":" ","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2023-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Prognostics and Health Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36001/ijphm.2023.v14i1.3419","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 2

Abstract

Early fault detection and fault prognosis are crucial to ensure efficient and safe operations of complex engineering systems such as the Spallation Neutron Source (SNS) and its power electronics (high voltage converter modulators). Following an advanced experimental facility setup that mimics SNS operating conditions, the authors successfully conducted 21 early fault detection experiments, where fault precursors are introduced in the system to a degree enough to cause degradation in the waveform signals, but not enough to reach a real fault. Nine different machine learning techniques based on ensemble trees, convolutional neural networks, support vector machines, and hierarchical voting ensembles are proposed to detect the fault precursors. Although all 9 models have shown a perfect and identical performance during the training and testing phase, the performance of most models has decreased in the next test phase once they got exposed to realworld data from the 21 experiments. The hierarchical voting ensemble, which features multiple layers of diverse models, maintains a distinguished performance in early detection of the fault precursors with 95% success rate (20/21 tests), followed by adaboost and extremely randomized trees with 52% and 48% success rates, respectively. The support vector machine models were the worst with only 24% success rate (5/21 tests). The study concluded that a successful implementation of machine learning in the SNS or particle accelerator power systems would require a major upgrade in the controller and the data acquisition system to facilitate streaming and handling big data for the machine learning models. In addition, this study shows that the best performing models were diverse and based on the ensemble concept to reduce the bias and hyperparameter sensitivity of individual models.
基于集成学习的粒子加速器电力电子早期故障检测
对于散裂中子源(SNS)及其电力电子设备(高压变换器调制器)等复杂工程系统而言,早期故障检测和故障预测是保证其高效安全运行的关键。在模拟SNS运行条件的先进实验设施设置之后,作者成功地进行了21次早期故障检测实验,其中故障前兆在系统中引入的程度足以导致波形信号的退化,但不足以达到真正的故障。提出了基于集成树、卷积神经网络、支持向量机和分层投票集成的九种不同的机器学习技术来检测故障前兆。虽然所有9个模型在训练和测试阶段都表现出完美和相同的性能,但一旦他们接触到21个实验的真实数据,大多数模型的性能在下一个测试阶段就会下降。分层投票集成具有多层不同模型,在早期检测故障前兆方面保持了优异的性能,成功率为95%(20/21次测试),其次是adaboost和极端随机树,成功率分别为52%和48%。支持向量机模型是最差的,只有24%的成功率(5/21次测试)。该研究得出结论,要在SNS或粒子加速器动力系统中成功实施机器学习,需要对控制器和数据采集系统进行重大升级,以促进机器学习模型的大数据流和处理。此外,本研究表明,表现最好的模型是多样化的,并且基于集成概念来减少单个模型的偏差和超参数敏感性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.90
自引率
9.50%
发文量
18
审稿时长
9 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信