{"title":"Synthesize and Characterization of Mesoporous ZrFe2O4@SiO₂ Core-shell Nanocomposite Modified with APTES and TCPP","authors":"R. Rahimi, M. Rabbani, H. Khosravi, A. Maleki","doi":"10.22052/JNS.2020.02.018","DOIUrl":null,"url":null,"abstract":"The mesoporous ZrFe2O4 nanocauliflowers were synthesized via the solvothermal method. The core-shell ZrFe2O4@SiO2 nanocomposite was successfully prepared by a simple wet route using tetraethylorthosilicate, then modified with (3-aminopropyl)triethoxisilan (APTES) as linker and tetrakis(4-carboxyphenyl)porphyrin (TCPP) as agent for light harvesting, to fabricate ZrFe2O4@SiO2-NH-TCPP nanocomposite. The characterizations of samples were done by Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), energy dispersive spectroscopy (EDS), nitrogen adsorption and desorption isotherms (BET), vibrating sample magnetometer (VSM), diffuse reflectance spectroscopy (DRS) and fluorescence spectroscopy. The prepared samples were applied as photocatalyst to remove of methyl orange (MO) under visible LED light irradiation. The obtained results showed that the presence of SiO2 and TCPP decreased the size of particles and improve the photocatalytic activity of samples, too, led to increase of photodegradation of MO. The final fabricated nanocomposite (ZrFe2O4@SiO2-NH-TCPP) could degrade MO about 100% under only 10 W visible LED irradiation and be separated easily by an external magnetic field.","PeriodicalId":16523,"journal":{"name":"Journal of Nanostructures","volume":"10 1","pages":"404-414"},"PeriodicalIF":1.4000,"publicationDate":"2020-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nanostructures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22052/JNS.2020.02.018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 2
Abstract
The mesoporous ZrFe2O4 nanocauliflowers were synthesized via the solvothermal method. The core-shell ZrFe2O4@SiO2 nanocomposite was successfully prepared by a simple wet route using tetraethylorthosilicate, then modified with (3-aminopropyl)triethoxisilan (APTES) as linker and tetrakis(4-carboxyphenyl)porphyrin (TCPP) as agent for light harvesting, to fabricate ZrFe2O4@SiO2-NH-TCPP nanocomposite. The characterizations of samples were done by Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), energy dispersive spectroscopy (EDS), nitrogen adsorption and desorption isotherms (BET), vibrating sample magnetometer (VSM), diffuse reflectance spectroscopy (DRS) and fluorescence spectroscopy. The prepared samples were applied as photocatalyst to remove of methyl orange (MO) under visible LED light irradiation. The obtained results showed that the presence of SiO2 and TCPP decreased the size of particles and improve the photocatalytic activity of samples, too, led to increase of photodegradation of MO. The final fabricated nanocomposite (ZrFe2O4@SiO2-NH-TCPP) could degrade MO about 100% under only 10 W visible LED irradiation and be separated easily by an external magnetic field.
期刊介绍:
Journal of Nanostructures is a medium for global academics to exchange and disseminate their knowledge as well as the latest discoveries and advances in the science and engineering of nanostructured materials. Topics covered in the journal include, but are not limited to the following: Nanosystems for solar cell, energy, catalytic and environmental applications Quantum dots, nanocrystalline materials, nanoparticles, nanocomposites Characterization of nanostructures and size dependent properties Fullerenes, carbon nanotubes and graphene Self-assembly and molecular organization Super hydrophobic surface and material Synthesis of nanostructured materials Nanobiotechnology and nanomedicine Functionalization of nanostructures Nanomagnetics Nanosensors.