{"title":"Shape-preserving average frequency response curves using rational polynomials: A case study on human stapes vibration measurements","authors":"Pieter Livens, Joris J.J. Dirckx","doi":"10.1016/j.phmed.2022.100055","DOIUrl":null,"url":null,"abstract":"<div><p>The vibration of the human middle ear shows sharp variations in the amplitude and phase over the audible frequency range. Measurements often differ between subjects, and it is difficult to determine the average response of the human middle ear. However, such an average response curve is of great value in detecting pathological ears. Simply averaging the amplitude and phase for each frequency results in a “washed-out” view due to differences in the locations of the maxima and minima of the curves. Therefore, a method is required to consider each individual curve's shape in the average.</p><p>This paper discusses a novel method based on frequency-response transfer functions. Each of the individual measurements is fitted with a rational polynomial. The average frequency response is determined by a weighted averaging of the individual curves' numerator and denominator polynomial coefficients. Such an average preserves the shape of the individual curves. The method is applied to vibrational data of the human stapes. As expected from the literature, two resonance frequencies at 1.14 ± 0.13 kHz and 3.61 ± 0.43 kHz were found. A comparison with other methods is made to discuss the method's advantages and disadvantages.</p></div>","PeriodicalId":37787,"journal":{"name":"Physics in Medicine","volume":"14 ","pages":"Article 100055"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2352451022000099/pdfft?md5=bc68792de0896d7ef438447f5bd78a28&pid=1-s2.0-S2352451022000099-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics in Medicine","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352451022000099","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0
Abstract
The vibration of the human middle ear shows sharp variations in the amplitude and phase over the audible frequency range. Measurements often differ between subjects, and it is difficult to determine the average response of the human middle ear. However, such an average response curve is of great value in detecting pathological ears. Simply averaging the amplitude and phase for each frequency results in a “washed-out” view due to differences in the locations of the maxima and minima of the curves. Therefore, a method is required to consider each individual curve's shape in the average.
This paper discusses a novel method based on frequency-response transfer functions. Each of the individual measurements is fitted with a rational polynomial. The average frequency response is determined by a weighted averaging of the individual curves' numerator and denominator polynomial coefficients. Such an average preserves the shape of the individual curves. The method is applied to vibrational data of the human stapes. As expected from the literature, two resonance frequencies at 1.14 ± 0.13 kHz and 3.61 ± 0.43 kHz were found. A comparison with other methods is made to discuss the method's advantages and disadvantages.
期刊介绍:
The scope of Physics in Medicine consists of the application of theoretical and practical physics to medicine, physiology and biology. Topics covered are: Physics of Imaging Ultrasonic imaging, Optical imaging, X-ray imaging, Fluorescence Physics of Electromagnetics Neural Engineering, Signal analysis in Medicine, Electromagnetics and the nerve system, Quantum Electronics Physics of Therapy Ultrasonic therapy, Vibrational medicine, Laser Physics Physics of Materials and Mechanics Physics of impact and injuries, Physics of proteins, Metamaterials, Nanoscience and Nanotechnology, Biomedical Materials, Physics of vascular and cerebrovascular diseases, Micromechanics and Micro engineering, Microfluidics in medicine, Mechanics of the human body, Rotary molecular motors, Biological physics, Physics of bio fabrication and regenerative medicine Physics of Instrumentation Engineering of instruments, Physical effects of the application of instruments, Measurement Science and Technology, Physics of micro-labs and bioanalytical sensor devices, Optical instrumentation, Ultrasound instruments Physics of Hearing and Seeing Acoustics and hearing, Physics of hearing aids, Optics and vision, Physics of vision aids Physics of Space Medicine Space physiology, Space medicine related Physics.