Eman Simbawa , Aly R. Seadawy , Taghreed G. Sugati
{"title":"Dispersive wave propagation of the nonlinear Sasa-Satsuma dynamical system with computational and analytical soliton solutions","authors":"Eman Simbawa , Aly R. Seadawy , Taghreed G. Sugati","doi":"10.1016/j.chaos.2021.111376","DOIUrl":null,"url":null,"abstract":"<div><p>The Sasa-Satsuma equation on a continuous background describes a nonlinear fiber system with higher-order effects including the third-order dispersion and Kerr dispersion. The Sasa-Satsuma equations describe the simultaneous propagation of two ultrashort pulses in the birefringent or two-mode fiber with the third-order dispersion, self-steepening, and stimulated Raman in scattering effects, and govern the propagation of ultra-fast pulses in optical fiber transmission systems. We consider the Sasa-Satsuma equation, which is one of the integrable extensions of the nonlinear Schrödinger equations. We find the functional integral and the Lagrangian of this model. We derived the computational and analytical soliton solutions of the nonlinear Sasa-Satsuma dynamical system. We discuss the stability analysis for our solutions.</p></div>","PeriodicalId":9764,"journal":{"name":"Chaos Solitons & Fractals","volume":"152 ","pages":"Article 111376"},"PeriodicalIF":5.6000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos Solitons & Fractals","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S096007792100730X","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 9
Abstract
The Sasa-Satsuma equation on a continuous background describes a nonlinear fiber system with higher-order effects including the third-order dispersion and Kerr dispersion. The Sasa-Satsuma equations describe the simultaneous propagation of two ultrashort pulses in the birefringent or two-mode fiber with the third-order dispersion, self-steepening, and stimulated Raman in scattering effects, and govern the propagation of ultra-fast pulses in optical fiber transmission systems. We consider the Sasa-Satsuma equation, which is one of the integrable extensions of the nonlinear Schrödinger equations. We find the functional integral and the Lagrangian of this model. We derived the computational and analytical soliton solutions of the nonlinear Sasa-Satsuma dynamical system. We discuss the stability analysis for our solutions.
期刊介绍:
Chaos, Solitons & Fractals strives to establish itself as a premier journal in the interdisciplinary realm of Nonlinear Science, Non-equilibrium, and Complex Phenomena. It welcomes submissions covering a broad spectrum of topics within this field, including dynamics, non-equilibrium processes in physics, chemistry, and geophysics, complex matter and networks, mathematical models, computational biology, applications to quantum and mesoscopic phenomena, fluctuations and random processes, self-organization, and social phenomena.