{"title":"Entropy Generation and Radiation Analysis on Peristaltic Transport of Hyperbolic Tangent Fluid with Hybrid Nanoparticle Through an Endoscope","authors":"S. Asha, Vijaylaxmi T. Talawar, M. M. Bhatti","doi":"10.1166/jon.2023.1993","DOIUrl":null,"url":null,"abstract":"The current study explores the impact of entropy generation, thermal jump, radiation, and inclined magnetic field on the peristaltic transport of hyperbolic tangent fluid containing molybdenum disulfide and silver nanoparticles through an endoscope with a long wavelength and low Reynolds\n number assumptions. Between two coaxial tubes, a non-Newtonian hyperbolic tangent fluid with silver nanoparticles is considered. The Second law of thermodynamics is used to examine the entropy generation. The Homotopy perturbation method (HPM) is applied to describe the solution of nonlinear\n partial differential equations. We were able to arrive at analytical solutions for velocity, temperature, and nanoparticle concentration. In the end, the impact of various physical parameters on temperature, nanoparticle concentration, velocity, entropy generation, and Bejan number was graphically\n depicted. The significant outcome of the present study is that the impact of Hartmann number and Brownian motion parameter declines the velocity profile, but the thermal Grashoff number enhances velocity, whereas Platelet-shaped nanoparticles achieve a higher speed as compare to Spherical-shaped\n nanoparticles.","PeriodicalId":47161,"journal":{"name":"Journal of Nanofluids","volume":" ","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nanofluids","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1166/jon.2023.1993","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The current study explores the impact of entropy generation, thermal jump, radiation, and inclined magnetic field on the peristaltic transport of hyperbolic tangent fluid containing molybdenum disulfide and silver nanoparticles through an endoscope with a long wavelength and low Reynolds
number assumptions. Between two coaxial tubes, a non-Newtonian hyperbolic tangent fluid with silver nanoparticles is considered. The Second law of thermodynamics is used to examine the entropy generation. The Homotopy perturbation method (HPM) is applied to describe the solution of nonlinear
partial differential equations. We were able to arrive at analytical solutions for velocity, temperature, and nanoparticle concentration. In the end, the impact of various physical parameters on temperature, nanoparticle concentration, velocity, entropy generation, and Bejan number was graphically
depicted. The significant outcome of the present study is that the impact of Hartmann number and Brownian motion parameter declines the velocity profile, but the thermal Grashoff number enhances velocity, whereas Platelet-shaped nanoparticles achieve a higher speed as compare to Spherical-shaped
nanoparticles.
期刊介绍:
Journal of Nanofluids (JON) is an international multidisciplinary peer-reviewed journal covering a wide range of research topics in the field of nanofluids and fluid science. It is an ideal and unique reference source for scientists and engineers working in this important and emerging research field of science, engineering and technology. The journal publishes full research papers, review articles with author''s photo and short biography, and communications of important new findings encompassing the fundamental and applied research in all aspects of science and engineering of nanofluids and fluid science related developing technologies.