Inexact Nonconvex Newton-Type Methods

Z. Yao, Peng Xu, Farbod Roosta-Khorasani, Michael W. Mahoney
{"title":"Inexact Nonconvex Newton-Type Methods","authors":"Z. Yao, Peng Xu, Farbod Roosta-Khorasani, Michael W. Mahoney","doi":"10.1287/IJOO.2019.0043","DOIUrl":null,"url":null,"abstract":"The paper aims to extend the theory and application of nonconvex Newton-type methods, namely trust region and cubic regularization, to the settings in which, in addition to the solution of subproblems, the gradient and the Hessian of the objective function are approximated. Using certain conditions on such approximations, the paper establishes optimal worst-case iteration complexities as the exact counterparts. This paper is part of a broader research program on designing, analyzing, and implementing efficient second-order optimization methods for large-scale machine learning applications. The authors were based at UC Berkeley when the idea of the project was conceived. The first two authors were PhD students, the third author was a postdoc, all supervised by the fourth author.","PeriodicalId":73382,"journal":{"name":"INFORMS journal on optimization","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"INFORMS journal on optimization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1287/IJOO.2019.0043","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

The paper aims to extend the theory and application of nonconvex Newton-type methods, namely trust region and cubic regularization, to the settings in which, in addition to the solution of subproblems, the gradient and the Hessian of the objective function are approximated. Using certain conditions on such approximations, the paper establishes optimal worst-case iteration complexities as the exact counterparts. This paper is part of a broader research program on designing, analyzing, and implementing efficient second-order optimization methods for large-scale machine learning applications. The authors were based at UC Berkeley when the idea of the project was conceived. The first two authors were PhD students, the third author was a postdoc, all supervised by the fourth author.
非精确非凸牛顿型方法
本文旨在将非凸牛顿型方法(即信赖域和三次正则化)的理论和应用扩展到除了子问题的解之外,还近似目标函数的梯度和Hessian的环境中。利用这种近似的某些条件,本文建立了最优最坏情况迭代复杂度作为精确对应。本文是大规模机器学习应用中设计、分析和实现高效二阶优化方法的更广泛研究计划的一部分。该项目的构思时,作者就在加州大学伯克利分校。前两位作者是博士生,第三位作者是博士后,均由第四位作者指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信