Z. Yao, Peng Xu, Farbod Roosta-Khorasani, Michael W. Mahoney
{"title":"Inexact Nonconvex Newton-Type Methods","authors":"Z. Yao, Peng Xu, Farbod Roosta-Khorasani, Michael W. Mahoney","doi":"10.1287/IJOO.2019.0043","DOIUrl":null,"url":null,"abstract":"The paper aims to extend the theory and application of nonconvex Newton-type methods, namely trust region and cubic regularization, to the settings in which, in addition to the solution of subproblems, the gradient and the Hessian of the objective function are approximated. Using certain conditions on such approximations, the paper establishes optimal worst-case iteration complexities as the exact counterparts. This paper is part of a broader research program on designing, analyzing, and implementing efficient second-order optimization methods for large-scale machine learning applications. The authors were based at UC Berkeley when the idea of the project was conceived. The first two authors were PhD students, the third author was a postdoc, all supervised by the fourth author.","PeriodicalId":73382,"journal":{"name":"INFORMS journal on optimization","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"INFORMS journal on optimization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1287/IJOO.2019.0043","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
The paper aims to extend the theory and application of nonconvex Newton-type methods, namely trust region and cubic regularization, to the settings in which, in addition to the solution of subproblems, the gradient and the Hessian of the objective function are approximated. Using certain conditions on such approximations, the paper establishes optimal worst-case iteration complexities as the exact counterparts. This paper is part of a broader research program on designing, analyzing, and implementing efficient second-order optimization methods for large-scale machine learning applications. The authors were based at UC Berkeley when the idea of the project was conceived. The first two authors were PhD students, the third author was a postdoc, all supervised by the fourth author.