{"title":"First-order estimates of the costs, input-output energy analysis, and energy returns on investment of conventional and emerging biofuels feedstocks","authors":"K. Christiansen, D. R. Raman, Guiping Hu, R. Anex","doi":"10.18331/BRJ2018.5.4.4","DOIUrl":null,"url":null,"abstract":"Here we report on a static, algebraic, spreadsheet-implemented modeling approach to estimate the costs, energy inputs and outputs, and global warming potential of biomass feedstocks. Inputs to the model included literature sourced data for: environmental factors, crop physiological-parameters such as radiation use efficiency and water use efficiency, and crop cost components. Using an energy-input-output life-cycle-assessment approach, we calculated the energy associated with each cost component, allowing an estimate of the total energy required to produce the crop and fuel alongside the energy return on investment. We did this for crop scenarios in the upper Midwest US and Far West US (for algae). Our results suggested that algae are capable of the highest areal biomass production rates of 120 MG/(ha·a), ten times greater than Maize. Algal fuel systems had the highest costs, ranging from 28 to 65 US $/GJ, compared to 17 US $/GJ for Maize ethanol. Algal fuel systems had the lowest energy returns on investment, nearly 0, compared to 25 for Switchgrass to ethanol. The carbon equivalent emissions associated with the production schemes predictions ranged from 40 (Maize) to 180 (algae PBR) CO2eq/GJnet. The promise of low cost fuel and carbon neutrality from algae is demonstrated here to be extremely challenging for fundamental reasons related to the capital-intensive nature of the cultivation system.","PeriodicalId":46938,"journal":{"name":"Biofuel Research Journal-BRJ","volume":" ","pages":""},"PeriodicalIF":14.4000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biofuel Research Journal-BRJ","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18331/BRJ2018.5.4.4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 20
Abstract
Here we report on a static, algebraic, spreadsheet-implemented modeling approach to estimate the costs, energy inputs and outputs, and global warming potential of biomass feedstocks. Inputs to the model included literature sourced data for: environmental factors, crop physiological-parameters such as radiation use efficiency and water use efficiency, and crop cost components. Using an energy-input-output life-cycle-assessment approach, we calculated the energy associated with each cost component, allowing an estimate of the total energy required to produce the crop and fuel alongside the energy return on investment. We did this for crop scenarios in the upper Midwest US and Far West US (for algae). Our results suggested that algae are capable of the highest areal biomass production rates of 120 MG/(ha·a), ten times greater than Maize. Algal fuel systems had the highest costs, ranging from 28 to 65 US $/GJ, compared to 17 US $/GJ for Maize ethanol. Algal fuel systems had the lowest energy returns on investment, nearly 0, compared to 25 for Switchgrass to ethanol. The carbon equivalent emissions associated with the production schemes predictions ranged from 40 (Maize) to 180 (algae PBR) CO2eq/GJnet. The promise of low cost fuel and carbon neutrality from algae is demonstrated here to be extremely challenging for fundamental reasons related to the capital-intensive nature of the cultivation system.
期刊介绍:
Biofuel Research Journal (BRJ) is a leading, peer-reviewed academic journal that focuses on high-quality research in the field of biofuels, bioproducts, and biomass-derived materials and technologies. The journal's primary goal is to contribute to the advancement of knowledge and understanding in the areas of sustainable energy solutions, environmental protection, and the circular economy. BRJ accepts various types of articles, including original research papers, review papers, case studies, short communications, and hypotheses. The specific areas covered by the journal include Biofuels and Bioproducts, Biomass Valorization, Biomass-Derived Materials for Energy and Storage Systems, Techno-Economic and Environmental Assessments, Climate Change and Sustainability, and Biofuels and Bioproducts in Circular Economy, among others. BRJ actively encourages interdisciplinary collaborations among researchers, engineers, scientists, policymakers, and industry experts to facilitate the adoption of sustainable energy solutions and promote a greener future. The journal maintains rigorous standards of peer review and editorial integrity to ensure that only impactful and high-quality research is published. Currently, BRJ is indexed by several prominent databases such as Web of Science, CAS Databases, Directory of Open Access Journals, Scimago Journal Rank, Scopus, Google Scholar, Elektronische Zeitschriftenbibliothek EZB, et al.