Meromorphic connections, determinant line bundles and the Tyurin parametrization

IF 0.5 4区 数学 Q3 MATHEMATICS
I. Biswas, J. Hurtubise
{"title":"Meromorphic connections, determinant line bundles and the Tyurin parametrization","authors":"I. Biswas, J. Hurtubise","doi":"10.4310/ajm.2021.v25.n4.a1","DOIUrl":null,"url":null,"abstract":"We develop a holomorphic equivalence between on one hand the space of pairs (stable bundle, flat connection on the bundle) and the ``sheaf of holomorphic connections'' (the sheaf of splittings of the one-jet sequence) for the determinant (Quillen) line bundle over the moduli space of vector bundles on a compact connected Riemann surface. This equivalence is shown to be holomorphically symplectic. The equivalences, both holomorphic and symplectic, seem to be quite general, in that they extend to other general families of holomorphic bundles and holomorphic connections, in particular those arising from ``Tyurin families\" of stable bundles over the surface. These families generalize the Tyurin parametrization of stable vector bundles $E$ over a compact connected Riemann surface, and one can build above them spaces of (equivalence classes of) connections, which are again symplectic. These spaces are also symplectically biholomorphically equivalent to the sheaf of connections for the determinant bundle over the Tyurin family. The last portion of the paper shows how this extends to moduli of framed bundles.","PeriodicalId":55452,"journal":{"name":"Asian Journal of Mathematics","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2019-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asian Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/ajm.2021.v25.n4.a1","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

Abstract

We develop a holomorphic equivalence between on one hand the space of pairs (stable bundle, flat connection on the bundle) and the ``sheaf of holomorphic connections'' (the sheaf of splittings of the one-jet sequence) for the determinant (Quillen) line bundle over the moduli space of vector bundles on a compact connected Riemann surface. This equivalence is shown to be holomorphically symplectic. The equivalences, both holomorphic and symplectic, seem to be quite general, in that they extend to other general families of holomorphic bundles and holomorphic connections, in particular those arising from ``Tyurin families" of stable bundles over the surface. These families generalize the Tyurin parametrization of stable vector bundles $E$ over a compact connected Riemann surface, and one can build above them spaces of (equivalence classes of) connections, which are again symplectic. These spaces are also symplectically biholomorphically equivalent to the sheaf of connections for the determinant bundle over the Tyurin family. The last portion of the paper shows how this extends to moduli of framed bundles.
亚纯连接、行列式线束和Tyurin参数化
我们在紧连通Riemann曲面上向量束模空间上的行列式(Quillen)线束的对空间(稳定束,束上的平连接)和“全纯连接束束”(单射流序列的分裂束)之间建立了一个全纯等价。证明了这个等价是全纯辛的。这些等价,无论是全纯的还是辛的,似乎都是相当普遍的,因为它们可以推广到其他全纯束和全纯连接的一般族,特别是那些由表面上稳定束的“Tyurin族”产生的等价。这些族推广了紧连通Riemann曲面上稳定向量束的Tyurin参数化,并且可以在它们上面建立(等价类)连接的空间,这也是辛的。这些空间也辛生物全纯等价于Tyurin族上行列式束的连接束。本文的最后一部分展示了如何将其扩展到框架束的模。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.00
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: Publishes original research papers and survey articles on all areas of pure mathematics and theoretical applied mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信