{"title":"Machine learning y lógicas semióticas: el caso de la publicidad digital","authors":"Mariano Zelcer","doi":"10.35305/lt.v26i2.805","DOIUrl":null,"url":null,"abstract":"Este artículo propone una aproximación a los procesos de aprendizaje automático por computadora desde una perspectiva semiótica peirciana. Para ello, trabaja en un territorio privilegiado para la observación de la articulación de la datificación de los usuarios con su posterior gestión mediante sistemas informáticos de aprendizaje por computadora: la publicidad digital. A partir de un caso real, se da cuenta de los modos en los que el machine learning articula lógicas abductivas e inductivas, poniendo foco en los modos en que los sistemas informáticos generan hipótesis a partir de la identificación de semejanzas y las ponen a prueba en investigaciones experimentales, cuyos resultados funcionan como input que realimenta el aprendizaje.","PeriodicalId":53286,"journal":{"name":"La Trama de la Comunicacion","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"La Trama de la Comunicacion","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35305/lt.v26i2.805","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Este artículo propone una aproximación a los procesos de aprendizaje automático por computadora desde una perspectiva semiótica peirciana. Para ello, trabaja en un territorio privilegiado para la observación de la articulación de la datificación de los usuarios con su posterior gestión mediante sistemas informáticos de aprendizaje por computadora: la publicidad digital. A partir de un caso real, se da cuenta de los modos en los que el machine learning articula lógicas abductivas e inductivas, poniendo foco en los modos en que los sistemas informáticos generan hipótesis a partir de la identificación de semejanzas y las ponen a prueba en investigaciones experimentales, cuyos resultados funcionan como input que realimenta el aprendizaje.