{"title":"Assessment of lumbopelvic–hip complex instability and segmental sequencing amongst softball athletes","authors":"G. Gilmer, J. Washington, G. Oliver","doi":"10.1080/23335432.2018.1481456","DOIUrl":null,"url":null,"abstract":"ABSTRACT The purpose of this study was to examine the effects of lumbopelvic–hip complex (LPHC) instability on segmental sequencing and the maximum velocities during the overhead throw. Fifty softball athletes (164.0 ± 104.0 cm, 65.6 ± 11.3 kg, 16.3 ± 3.8 years) classified as either college, high school or youth performed three 60 ft overhead throws then executed bilateral single leg squats (SLS). Kinematics were recorded using an electromagnetic tracking system. Participants were classified as ‘unstable’ if they displayed knee valgus greater than 15° at 45° knee flexion in the descending phase of the SLS. One-way ANOVAs and Bonferonni post-hoc tests revealed no significant differences between stability groups in segmental sequencing and maximum velocities amongst the college, high school and youth participation level. When all athletes were grouped together regardless of age, there were still no significant differences observed between groups. These findings imply that segmental sequencing and maximum velocities are not a function of LPHC stability amongst this specific group of athletes. Additionally, the SLS may not accurately quantify LPHC stability in regards to throwing. The authors recommend that future studies repeat these methods amongst different athletic populations and continue to evaluate different clinical tests for LPHC stability.","PeriodicalId":52124,"journal":{"name":"International Biomechanics","volume":"5 1","pages":"36 - 45"},"PeriodicalIF":0.0000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/23335432.2018.1481456","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Biomechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/23335432.2018.1481456","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 6
Abstract
ABSTRACT The purpose of this study was to examine the effects of lumbopelvic–hip complex (LPHC) instability on segmental sequencing and the maximum velocities during the overhead throw. Fifty softball athletes (164.0 ± 104.0 cm, 65.6 ± 11.3 kg, 16.3 ± 3.8 years) classified as either college, high school or youth performed three 60 ft overhead throws then executed bilateral single leg squats (SLS). Kinematics were recorded using an electromagnetic tracking system. Participants were classified as ‘unstable’ if they displayed knee valgus greater than 15° at 45° knee flexion in the descending phase of the SLS. One-way ANOVAs and Bonferonni post-hoc tests revealed no significant differences between stability groups in segmental sequencing and maximum velocities amongst the college, high school and youth participation level. When all athletes were grouped together regardless of age, there were still no significant differences observed between groups. These findings imply that segmental sequencing and maximum velocities are not a function of LPHC stability amongst this specific group of athletes. Additionally, the SLS may not accurately quantify LPHC stability in regards to throwing. The authors recommend that future studies repeat these methods amongst different athletic populations and continue to evaluate different clinical tests for LPHC stability.
期刊介绍:
International Biomechanics is a fully Open Access biomechanics journal that aims to foster innovation, debate and collaboration across the full spectrum of biomechanics. We publish original articles, reviews, and short communications in all areas of biomechanics and welcome papers that explore: Bio-fluid mechanics, Continuum Biomechanics, Biotribology, Cellular Biomechanics, Mechanobiology, Mechano-transduction, Tissue Mechanics, Comparative Biomechanics and Functional Anatomy, Allometry, Animal locomotion in biomechanics, Gait analysis in biomechanics, Musculoskeletal and Orthopaedic Biomechanics, Cardiovascular Biomechanics, Plant Biomechanics, Injury Biomechanics, Impact Biomechanics, Sport and Exercise Biomechanics, Kinesiology, Rehabilitation in biomechanics, Quantitative Ergonomics, Human Factors engineering, Occupational Biomechanics, Developmental Biomechanics.