{"title":"Dynamic Modeling and Control Law Design of a Fuel-electric Hybrid Multi-rotor UAV","authors":"Xice Xu, Yang Lu, Xufeng Wu","doi":"10.1177/17568293221078925","DOIUrl":null,"url":null,"abstract":"In this paper, the design of control law for a new concept fuel-electric hybrid multi-rotor UAV with lift/attitude control separation is investigated. The remarkable feature of the UAV is that it has a large proportion of fuel weight. Firstly, based on the quasi-coordinate Lagrangian equation and sloshing equivalent model using the multi-mass-spring analogy, the non-linear dynamic model of the UAV considering the fuel slosh dynamics is established. Compared with the existing multi-rotor modeling method, it is more intuitive and accurate to describe the non-linear coupling process of sloshing and UAV's motion degrees of freedom. Secondly, the attitude control law is designed based on the finite-time sliding mode observer and cascaded continuous sliding mode controller to eliminate the adverse effects of fuel sloshing and mass changing, and only using the measurable angles. Furthermore, aiming at the problem of power redundancy of the altitude channel, a memoryless non-linear altitude authority assignment controller based on vertical acceleration is proposed for improving the control performance. Finally, the simulation results of the waypoint flight illustrate the feasibility and effectiveness of the proposed control strategy.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/17568293221078925","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1
Abstract
In this paper, the design of control law for a new concept fuel-electric hybrid multi-rotor UAV with lift/attitude control separation is investigated. The remarkable feature of the UAV is that it has a large proportion of fuel weight. Firstly, based on the quasi-coordinate Lagrangian equation and sloshing equivalent model using the multi-mass-spring analogy, the non-linear dynamic model of the UAV considering the fuel slosh dynamics is established. Compared with the existing multi-rotor modeling method, it is more intuitive and accurate to describe the non-linear coupling process of sloshing and UAV's motion degrees of freedom. Secondly, the attitude control law is designed based on the finite-time sliding mode observer and cascaded continuous sliding mode controller to eliminate the adverse effects of fuel sloshing and mass changing, and only using the measurable angles. Furthermore, aiming at the problem of power redundancy of the altitude channel, a memoryless non-linear altitude authority assignment controller based on vertical acceleration is proposed for improving the control performance. Finally, the simulation results of the waypoint flight illustrate the feasibility and effectiveness of the proposed control strategy.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.