Meryem Taoufiki, H. Chabba, D. Dafir, A. Barroug, M. Boulghallat, A. Jouaiti
{"title":"Atomistic Investigation Using Molecular Dynamics Simulation of τ4-Al3FeSi2 and τ12-Al3Fe2Si Phases under Tensile Deformation","authors":"Meryem Taoufiki, H. Chabba, D. Dafir, A. Barroug, M. Boulghallat, A. Jouaiti","doi":"10.4028/p-0xoa4x","DOIUrl":null,"url":null,"abstract":"Aluminum-Iron-Silicon (Al-Fe-Si) alloys are extremely applied in many specific industries, such as aerospace and automobiles. Their atomic concentration influences the mechanical behavior of the investigated τ4-Al3Fe2Si and τ12-Al3FeSi2 phases. The uniaxial-tensile deformation is used to compare their structural evolution under the same conditions.Atomic displacement and mechanical behavior have an interest in the elastic and plastic areas. Stress-Strain responses and Radial Distribution Function (RDF) are required. Further, atomic simulations using molecular dynamics demonstrate the change occurs. Its process is carried out at a strain rate of 21×1010 s-1 using the NPT (isothermal-isobaric) with roughly 20 700 atoms at a pressure of 105 Pa. Furthermore, using a Nosée Hoover thermostat at the temperature of 300 k is decisive.The Modified Embedded Atoms Method (MEAM) is the applied potential between Al, Fe, and Si atoms. The elastic modulus and single pair atomic correlation before and after straining are increased by this method. The atomic correlations are shown in short- and long-range order and the τ12-Al3Fe2Si phase illustrates stronger properties compared to τ4-Al3Fe2Si phase. Our results underscore an important variation associated with the change of iron and silicon concentration. More specifics are covered in the selection paper.","PeriodicalId":45925,"journal":{"name":"International Journal of Engineering Research in Africa","volume":"61 1","pages":"1 - 15"},"PeriodicalIF":0.8000,"publicationDate":"2022-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Engineering Research in Africa","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4028/p-0xoa4x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1
Abstract
Aluminum-Iron-Silicon (Al-Fe-Si) alloys are extremely applied in many specific industries, such as aerospace and automobiles. Their atomic concentration influences the mechanical behavior of the investigated τ4-Al3Fe2Si and τ12-Al3FeSi2 phases. The uniaxial-tensile deformation is used to compare their structural evolution under the same conditions.Atomic displacement and mechanical behavior have an interest in the elastic and plastic areas. Stress-Strain responses and Radial Distribution Function (RDF) are required. Further, atomic simulations using molecular dynamics demonstrate the change occurs. Its process is carried out at a strain rate of 21×1010 s-1 using the NPT (isothermal-isobaric) with roughly 20 700 atoms at a pressure of 105 Pa. Furthermore, using a Nosée Hoover thermostat at the temperature of 300 k is decisive.The Modified Embedded Atoms Method (MEAM) is the applied potential between Al, Fe, and Si atoms. The elastic modulus and single pair atomic correlation before and after straining are increased by this method. The atomic correlations are shown in short- and long-range order and the τ12-Al3Fe2Si phase illustrates stronger properties compared to τ4-Al3Fe2Si phase. Our results underscore an important variation associated with the change of iron and silicon concentration. More specifics are covered in the selection paper.
期刊介绍:
"International Journal of Engineering Research in Africa" is a peer-reviewed journal which is devoted to the publication of original scientific articles on research and development of engineering systems carried out in Africa and worldwide. We publish stand-alone papers by individual authors. The articles should be related to theoretical research or be based on practical study. Articles which are not from Africa should have the potential of contributing to its progress and development.