Fourth-order elliptic problems involving concave-superlinear nonlinearities

IF 0.7 4区 数学 Q2 MATHEMATICS
T. Cavalcante, Edcarlos D. Silva
{"title":"Fourth-order elliptic problems involving concave-superlinear nonlinearities","authors":"T. Cavalcante, Edcarlos D. Silva","doi":"10.12775/tmna.2022.011","DOIUrl":null,"url":null,"abstract":"The existence of solutions for a huge class of superlinear elliptic problems involving fourth-order elliptic problems defined on bounded domains\nunder Navier boundary conditions is established. To this end we do not apply the well-known\nAmbrosetti-Rabinowitz condition. Instead, we assume that the nonlinear term\nis nonquadratic at infinity. Furthermore, the nonlinear term is a concave-superlinear function which can be indefinite in sign. \nIn order to apply variational methods we employ some delicate arguments recovering some kind of compactness.","PeriodicalId":23130,"journal":{"name":"Topological Methods in Nonlinear Analysis","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2022-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Topological Methods in Nonlinear Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.12775/tmna.2022.011","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3

Abstract

The existence of solutions for a huge class of superlinear elliptic problems involving fourth-order elliptic problems defined on bounded domains under Navier boundary conditions is established. To this end we do not apply the well-known Ambrosetti-Rabinowitz condition. Instead, we assume that the nonlinear term is nonquadratic at infinity. Furthermore, the nonlinear term is a concave-superlinear function which can be indefinite in sign. In order to apply variational methods we employ some delicate arguments recovering some kind of compactness.
涉及凹-超线性非线性的四阶椭圆问题
在Navier边界条件下,建立了一大类超线性椭圆问题的解的存在性,该问题涉及定义在有界域上的四阶椭圆问题。为此,我们不应用众所周知的Ambrosetti-Rabinowitz条件。相反,我们假设非线性终端在无穷大处是非二次的。此外,非线性项是一个符号不定的凹超线性函数。为了应用变分方法,我们使用了一些精细的自变量来恢复某种紧致性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.00
自引率
0.00%
发文量
57
审稿时长
>12 weeks
期刊介绍: Topological Methods in Nonlinear Analysis (TMNA) publishes research and survey papers on a wide range of nonlinear analysis, giving preference to those that employ topological methods. Papers in topology that are of interest in the treatment of nonlinear problems may also be included.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信