Variation of Physical and Chemical Properties of Soils under Different Cropping Systems in the Watershed of Kpocomey, Southern Benin

A. Kouelo, Alohoutade Finagnon Mathieu, Avakoudjo Julien, Akplo Tobi Moriaque, Agodo Lambert, Agonvinon Mahugnon Socrate, Houngnandan Pascal, A. Anastase, Amadji Guillaume Lucien, Saïdou Aliou
{"title":"Variation of Physical and Chemical Properties of Soils under Different Cropping Systems in the Watershed of Kpocomey, Southern Benin","authors":"A. Kouelo, Alohoutade Finagnon Mathieu, Avakoudjo Julien, Akplo Tobi Moriaque, Agodo Lambert, Agonvinon Mahugnon Socrate, Houngnandan Pascal, A. Anastase, Amadji Guillaume Lucien, Saïdou Aliou","doi":"10.4236/ojss.2020.1011026","DOIUrl":null,"url":null,"abstract":"Soils degradation is one of the constraints in food security achievement in Benin. This study aimed at assessing the effect of cropping systems and slope on soil physical and chemical properties in the watershed of Kpacomey located in the Aplahoue district. Soil samples were collected from three parallel transects along the slope. Sampling was carried out under different treatments combining cropping systems (Maize-Cassava, pure Palm grove, Palm grove-Maize-Cassava and Teak Plantation) along with slope levels (low slope, medium slope and high slope degree). The impact of cropping systems and slope on soil properties was assessed by determining the physical and chemical parameters. The cropping systems significantly (p 3) was recorded under the Palm grove-Maize-Cassava cropping system while the highest (1.47 g/cm3) was obtained with pure Palm grove cropping system. Root biomass was more abundant (0.28%) with the pure Palm grove cropping system. However, root biomass was significantly (p 0.05) on the effect of cropping systems and slope. Moreover, cropping systems resulted in significant effects (p < 0.05). Soil organic matter and soil-assimilated phosphorus content were significantly influenced by the effect of the slope. These findings indicated that cropping systems and slope are significant drivers in soil degradation in the Kpacomey watershed and bringing out cropping systems that best aim at soil conservation.","PeriodicalId":57369,"journal":{"name":"土壤科学期刊(英文)","volume":"10 1","pages":"501-517"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"土壤科学期刊(英文)","FirstCategoryId":"1091","ListUrlMain":"https://doi.org/10.4236/ojss.2020.1011026","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Soils degradation is one of the constraints in food security achievement in Benin. This study aimed at assessing the effect of cropping systems and slope on soil physical and chemical properties in the watershed of Kpacomey located in the Aplahoue district. Soil samples were collected from three parallel transects along the slope. Sampling was carried out under different treatments combining cropping systems (Maize-Cassava, pure Palm grove, Palm grove-Maize-Cassava and Teak Plantation) along with slope levels (low slope, medium slope and high slope degree). The impact of cropping systems and slope on soil properties was assessed by determining the physical and chemical parameters. The cropping systems significantly (p 3) was recorded under the Palm grove-Maize-Cassava cropping system while the highest (1.47 g/cm3) was obtained with pure Palm grove cropping system. Root biomass was more abundant (0.28%) with the pure Palm grove cropping system. However, root biomass was significantly (p 0.05) on the effect of cropping systems and slope. Moreover, cropping systems resulted in significant effects (p < 0.05). Soil organic matter and soil-assimilated phosphorus content were significantly influenced by the effect of the slope. These findings indicated that cropping systems and slope are significant drivers in soil degradation in the Kpacomey watershed and bringing out cropping systems that best aim at soil conservation.
贝宁南部Kpocomey流域不同耕作制度下土壤理化性质的变化
土壤退化是贝宁实现粮食安全的制约因素之一。本研究旨在评估种植制度和坡度对Aplahoue区Kpacomey流域土壤物理和化学性质的影响。从沿斜坡的三个平行横断面上采集土壤样本。在不同处理下进行取样,结合种植系统(玉米木薯、纯棕榈林、棕榈林玉米木薯和柚木种植园)和坡度(低坡度、中坡度和高坡度)。通过确定物理和化学参数,评估了种植制度和坡度对土壤性质的影响。棕榈林-玉米-木薯种植系统的种植系统显著(P3),而纯棕榈林种植系统的产量最高(1.47 g/cm3)。纯棕榈林种植体系的根系生物量更丰富(0.28%)。然而,根系生物量对种植制度和坡度的影响显著(p0.05)。种植制度对土壤有机质和土壤同化磷含量的影响显著(p<0.05)。这些发现表明,种植制度和坡度是Kpacomey流域土壤退化的重要驱动因素,并带来了最有利于土壤保护的种植制度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
278
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信