The Characteristics of Thunderstorms and Their Lightning Activity on the Qinghai-Tibetan Plateau

IF 2.1 4区 地球科学 Q3 METEOROLOGY & ATMOSPHERIC SCIENCES
Lei Hui, Yunjun Zhou, Zhi-teng Yan
{"title":"The Characteristics of Thunderstorms and Their Lightning Activity on the Qinghai-Tibetan Plateau","authors":"Lei Hui, Yunjun Zhou, Zhi-teng Yan","doi":"10.1155/2022/9102145","DOIUrl":null,"url":null,"abstract":"This paper discusses the temporal and spatial distribution characteristics of cloud-to-ground (CG) lightning activity over the Qinghai-Tibetan Plateau (QTP) from 2009 to 2018 and their dependence on meteorological factors. It is found that (1) the number of CG flashes fluctuates, reaches a maximum in 2014, and then gradually decreases. The main active period of CG lightning is from June to September each year, after which it decreases rapidly. CG lightning is mainly distributed in the valley areas at around 4800 m above sea level at Lhasa, Nagqu, and Chamdo, and there are differences in the characteristics of CG activity in these three areas. The peak of daily CG lightning occurs at 1000 UTC, and the lowest value is at 0400 UTC. The distribution of CG lightning in all seasons has obvious differences in peak time and the proportion of positive CG (+CG) lightning, with the ratio of +CG lightning to total CG lightning flashes in spring and autumn exceeding 50%. (2) The ratio of +CG lightning to total CG lightning flashes over the QTP is influenced by a combination of thermodynamic and microphysical factors. Over the QTP, greater vertical wind shear leads to the movement of upper positive charges and promotes the occurrence of +CG lightning. Also, the higher total column liquid water content implies higher cloud water content in the warm-cloud region, and the higher cloud-base height implies a thicker warm-cloud region, which is not conducive to the occurrence of +CG lightning. (3) During high-value years (in this study, 2010, 2012, 2014, and 2016), the midlatitude (30°N–60°N) high pressure is strong and the plateau is situated at the intersection of the East Asian and South Asian monsoons and the cold air from the northwest, which strengthens the water vapor convergence and increases the frequency of thunderstorms. When the plateau is under the control of the southerly monsoon from June to September every year, its atmosphere is full of water vapor and lightning activity is accordingly high, with the proportion of +CG lightning being about 10%. Meanwhile, in the remaining months, when controlled by the westerly wind belt, the plateau’s water vapor condition is poor, the level of lightning activity weakens, and the proportion of +CG lightning gradually increases to more than 50%.","PeriodicalId":7353,"journal":{"name":"Advances in Meteorology","volume":" ","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2022-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Meteorology","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1155/2022/9102145","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 1

Abstract

This paper discusses the temporal and spatial distribution characteristics of cloud-to-ground (CG) lightning activity over the Qinghai-Tibetan Plateau (QTP) from 2009 to 2018 and their dependence on meteorological factors. It is found that (1) the number of CG flashes fluctuates, reaches a maximum in 2014, and then gradually decreases. The main active period of CG lightning is from June to September each year, after which it decreases rapidly. CG lightning is mainly distributed in the valley areas at around 4800 m above sea level at Lhasa, Nagqu, and Chamdo, and there are differences in the characteristics of CG activity in these three areas. The peak of daily CG lightning occurs at 1000 UTC, and the lowest value is at 0400 UTC. The distribution of CG lightning in all seasons has obvious differences in peak time and the proportion of positive CG (+CG) lightning, with the ratio of +CG lightning to total CG lightning flashes in spring and autumn exceeding 50%. (2) The ratio of +CG lightning to total CG lightning flashes over the QTP is influenced by a combination of thermodynamic and microphysical factors. Over the QTP, greater vertical wind shear leads to the movement of upper positive charges and promotes the occurrence of +CG lightning. Also, the higher total column liquid water content implies higher cloud water content in the warm-cloud region, and the higher cloud-base height implies a thicker warm-cloud region, which is not conducive to the occurrence of +CG lightning. (3) During high-value years (in this study, 2010, 2012, 2014, and 2016), the midlatitude (30°N–60°N) high pressure is strong and the plateau is situated at the intersection of the East Asian and South Asian monsoons and the cold air from the northwest, which strengthens the water vapor convergence and increases the frequency of thunderstorms. When the plateau is under the control of the southerly monsoon from June to September every year, its atmosphere is full of water vapor and lightning activity is accordingly high, with the proportion of +CG lightning being about 10%. Meanwhile, in the remaining months, when controlled by the westerly wind belt, the plateau’s water vapor condition is poor, the level of lightning activity weakens, and the proportion of +CG lightning gradually increases to more than 50%.
青藏高原雷暴特征及其雷电活动
本文讨论了2009-2018年青藏高原云地闪电活动的时空分布特征及其对气象因素的依赖性。研究发现:(1)CG闪光次数有波动,在2014年达到最大值,然后逐渐减少。CG闪电的主要活动期是每年的6月至9月,之后迅速减少。CG闪电主要分布在4800左右的山谷地区 拉萨、那曲和昌都的CG活动特征存在差异。每日CG闪电的峰值出现在1000 UTC,最低值出现在0400 UTC。CG闪电在各季节的分布在峰值时间和正CG(+CG)闪电的比例上有明显差异,春秋两季+CG闪电占总CG闪电的比例超过50%。(2) QTP上+CG闪电与总CG闪电的比率受到热力学和微观物理因素的综合影响。在QTP上,更大的垂直风切变导致上部正电荷的移动,并促进+CG闪电的发生。此外,总柱液态水含量越高,意味着暖云区的云水含量越大,而云底高度越高,则意味着暖云区越厚,这不利于+CG闪电的发生。(3) 在高价值年份(本研究中,2010年、2012年、2014年和2016年),中纬度(30°N–60°N)高压较强,高原位于东亚和南亚季风与西北冷空气的交汇处,这加强了水汽辐合,增加了雷暴的频率。每年6月至9月,当高原受南风控制时,其大气中充满了水蒸气,闪电活动也相应较高,+CG闪电的比例约为10%。同时,在剩下的几个月里,受西风带控制,高原的水汽条件较差,雷电活动水平减弱,+CG雷电的比例逐渐增加到50%以上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in Meteorology
Advances in Meteorology 地学天文-气象与大气科学
CiteScore
5.30
自引率
3.40%
发文量
80
审稿时长
>12 weeks
期刊介绍: Advances in Meteorology is a peer-reviewed, Open Access journal that publishes original research articles as well as review articles in all areas of meteorology and climatology. Topics covered include, but are not limited to, forecasting techniques and applications, meteorological modeling, data analysis, atmospheric chemistry and physics, climate change, satellite meteorology, marine meteorology, and forest meteorology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信