Linear Response Theory of Scale-Dependent Viscoelasticity for Overdamped Brownian Particle Systems

IF 1.3 4区 工程技术 Q3 MECHANICS
Takashi Uneyama
{"title":"Linear Response Theory of Scale-Dependent Viscoelasticity for Overdamped Brownian Particle Systems","authors":"Takashi Uneyama","doi":"10.1678/rheology.50.275","DOIUrl":null,"url":null,"abstract":"We show the linear response theory of spatial-scale-dependent relaxation moduli for overdamped Brownian particle systems. We employ the Irving-Kirkwood stress tensor field as the microscopic stress tensor field. We show that the scale-dependent relaxation modulus tensor, which characterizes the response of the stress tensor field to the applied velocity gradient field, can be expressed by using the correlation function of the Irving-Kirkwood stress tensor field. The spatial Fourier transform of the relaxation modulus tensor gives the wavenumber-dependent relaxation modulus. For isotropic and homogeneous systems, the relaxation modulus tensor has only two independent components. The transverse and longitudinal deformation modes give the wavenumber-dependent shear relaxation modulus and the wavenumber-dependent bulk relaxation modulus. As simple examples, we derive the explicit expressions for the relaxation moduli for two simple models the non-interacting Brownian particles and the harmonic dumbbell model.","PeriodicalId":19282,"journal":{"name":"Nihon Reoroji Gakkaishi","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2022-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nihon Reoroji Gakkaishi","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1678/rheology.50.275","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

Abstract

We show the linear response theory of spatial-scale-dependent relaxation moduli for overdamped Brownian particle systems. We employ the Irving-Kirkwood stress tensor field as the microscopic stress tensor field. We show that the scale-dependent relaxation modulus tensor, which characterizes the response of the stress tensor field to the applied velocity gradient field, can be expressed by using the correlation function of the Irving-Kirkwood stress tensor field. The spatial Fourier transform of the relaxation modulus tensor gives the wavenumber-dependent relaxation modulus. For isotropic and homogeneous systems, the relaxation modulus tensor has only two independent components. The transverse and longitudinal deformation modes give the wavenumber-dependent shear relaxation modulus and the wavenumber-dependent bulk relaxation modulus. As simple examples, we derive the explicit expressions for the relaxation moduli for two simple models the non-interacting Brownian particles and the harmonic dumbbell model.
超阻尼布朗粒子系统的尺度相关粘弹性线性响应理论
我们给出了过阻尼布朗粒子系统空间尺度相关弛豫模的线性响应理论。我们采用Irving-Kirkwood应力张量场作为微观应力张量场。我们证明了表征应力张量场对外加速度梯度场响应的尺度相关松弛模量张量可以用Irving-Kirkwood应力张量场的相关函数来表示。松弛模张量的空间傅里叶变换给出了与波数相关的松弛模量。对于各向同性和齐次系统,松弛模张量只有两个独立的分量。横向和纵向变形模式给出了与波数相关的剪切松弛模量和与波数相关的体松弛模量。作为简单的例子,我们导出了两种简单模型的松弛模量的显式表达式:非相互作用布朗粒子和调和哑铃模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nihon Reoroji Gakkaishi
Nihon Reoroji Gakkaishi 工程技术-高分子科学
CiteScore
1.50
自引率
61.50%
发文量
47
审稿时长
>12 weeks
期刊介绍: For the communication among the members, the journal of the Society of Rheology Japan, NIHON REOROJI GAKKAISHI (5 issues per year), was established in 1973 and it is the oldest journal on rheology in Asia. The journal contains original and review articles on rheology and related topics, information for all SRJ events, and reports of domestic/overseas meetings. Articles in Japanese as well as in English are considered for publication, not only from the members but also from the researchers outside. Papers from new emerging areas of the field are particularly welcome. The electronic version of the articles is available via the internet with an open access policy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信