Algebra structure of multiple zeta values in positive characteristic

IF 1.8 2区 数学 Q1 MATHEMATICS
Chieh-Yu Chang, Yen-Tsung Chen, Yoshinori Mishiba
{"title":"Algebra structure of multiple zeta values in positive characteristic","authors":"Chieh-Yu Chang, Yen-Tsung Chen, Yoshinori Mishiba","doi":"10.4310/cjm.2022.v10.n4.a1","DOIUrl":null,"url":null,"abstract":"This paper is a culmination of [CM20] on the study of multiple zeta values (MZV's) over function fields in positive characteristic. For any finite place $v$ of the rational function field $k$ over a finite field, we prove that the $v$-adic MZV's satisfy the same $\\bar{k}$-algebraic relations that their corresponding $\\infty$-adic MZV's satisfy. Equivalently, we show that the $v$-adic MZV's form an algebra with multiplication law given by the $q$-shuffle product which comes from the $\\infty$-adic MZV's, and there is a well-defined $\\bar{k}$-algebra homomorphism from the $\\infty$-adic MZV's to the $v$-adic MZV's.","PeriodicalId":48573,"journal":{"name":"Cambridge Journal of Mathematics","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2020-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cambridge Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/cjm.2022.v10.n4.a1","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 4

Abstract

This paper is a culmination of [CM20] on the study of multiple zeta values (MZV's) over function fields in positive characteristic. For any finite place $v$ of the rational function field $k$ over a finite field, we prove that the $v$-adic MZV's satisfy the same $\bar{k}$-algebraic relations that their corresponding $\infty$-adic MZV's satisfy. Equivalently, we show that the $v$-adic MZV's form an algebra with multiplication law given by the $q$-shuffle product which comes from the $\infty$-adic MZV's, and there is a well-defined $\bar{k}$-algebra homomorphism from the $\infty$-adic MZV's to the $v$-adic MZV's.
正特征下多个zeta值的代数结构
本文是[CM20]对正特征函数场上的多重zeta值(MZV's)的研究的高潮。对于有限域上有理函数域$k$的任意有限位置$v$,我们证明了$v$ -adic MZV与其对应的$\infty$ -adic MZV满足相同的$\bar{k}$ -代数关系。同样地,我们证明了$v$ -adic MZV与来自$\infty$ -adic MZV的$q$ -shuffle积所给出的乘法定律形成了一个代数,并且证明了$\infty$ -adic MZV与$v$ -adic MZV之间存在一个定义良好的$\bar{k}$ -代数同态。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.10
自引率
0.00%
发文量
7
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信