Normalized Null hypersurfaces of Indefinite K\"{a}hler Manifolds

IF 0.4 Q4 MATHEMATICS
Amrınder Pal Singh, C. Atindogbe, Rakesh Kumar, V. Jain
{"title":"Normalized Null hypersurfaces of Indefinite K\\\"{a}hler Manifolds","authors":"Amrınder Pal Singh, C. Atindogbe, Rakesh Kumar, V. Jain","doi":"10.36890/iejg.1148612","DOIUrl":null,"url":null,"abstract":"We study null hypersurfaces of indefinite K\\\"{a}hler manifolds and by taking the advantages of the almost complex structure $J$, we select a suitable rigging $\\zeta$, which we call the $J-$rigging, on the null hypersurface. This suitable rigging enables us to build an associated Hermitian metric $\\breve{g}$ on the ambient space and which is restricted into a non-degenerated metric $\\widetilde{g}$ on the normalized null hypersurface. We derive Gauss-Weingarten type formulae for null hypersurface $M$ of an indefinite K\\\"{a}hler manifold $\\overline{M}$ with a fixed closed Killing $J-$rigging for $M$. Later, we establish some relations linking the curvatures, null sectional curvatures, Ricci curvatures, scalar curvatures etc. of the ambient manifold and normalized null hypersurface.","PeriodicalId":43768,"journal":{"name":"International Electronic Journal of Geometry","volume":" ","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2023-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Electronic Journal of Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36890/iejg.1148612","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We study null hypersurfaces of indefinite K\"{a}hler manifolds and by taking the advantages of the almost complex structure $J$, we select a suitable rigging $\zeta$, which we call the $J-$rigging, on the null hypersurface. This suitable rigging enables us to build an associated Hermitian metric $\breve{g}$ on the ambient space and which is restricted into a non-degenerated metric $\widetilde{g}$ on the normalized null hypersurface. We derive Gauss-Weingarten type formulae for null hypersurface $M$ of an indefinite K\"{a}hler manifold $\overline{M}$ with a fixed closed Killing $J-$rigging for $M$. Later, we establish some relations linking the curvatures, null sectional curvatures, Ricci curvatures, scalar curvatures etc. of the ambient manifold and normalized null hypersurface.
不定K\ {a}hler流形的归一化零超曲面
我们研究了不定K\“{a}hler流形,并利用几乎复杂的结构$J$的优点,在零超曲面上选择了一个合适的索具$\zeta$,我们称之为$J-$索具。这种合适的索具使我们能够在环境空间上建立一个相关的埃尔米特度量$\breve{g}$,并将其限制为归一化零超曲面上的非退化度量$\widetilde{g}$。我们导出了不定K\“”的零超曲面$M$的高斯-温加滕型公式{a}hler歧管$\overline{M}$具有固定的闭合Killing$J-$操纵$M$。随后,我们建立了环境流形的曲率、零截面曲率、Ricci曲率、标量曲率等与归一化零超曲面之间的一些联系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.80
自引率
14.30%
发文量
32
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信