Hyperbolic–parabolic normal form and local classical solutions for cross-diffusion systems with incomplete diffusion

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
P. Druet, Katharina Hopf, A. Jüngel
{"title":"Hyperbolic–parabolic normal form and local classical solutions for cross-diffusion systems with incomplete diffusion","authors":"P. Druet, Katharina Hopf, A. Jüngel","doi":"10.1080/03605302.2023.2212479","DOIUrl":null,"url":null,"abstract":"Abstract We investigate degenerate cross-diffusion equations, with a rank-deficient diffusion-matrix, modelling multispecies population dynamics driven by partial pressure gradients. These equations have recently been found to arise in a mean-field limit of interacting stochastic particle systems. To date, their analysis in multiple space dimensions has been confined to the purely convective case with equal mobility coefficients. In this article, we introduce a normal form for an entropic class of such equations which reveals their structure of a symmetric hyperbolic–parabolic system. Due to the state-dependence of the range and kernel of the singular diffusive matrix, our way of rewriting the equations is different from that classically used for symmetric second-order systems with a nullspace invariance property. By means of this change of variables, we solve the Cauchy problem for short times and positive initial data in for","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2022-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/03605302.2023.2212479","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 2

Abstract

Abstract We investigate degenerate cross-diffusion equations, with a rank-deficient diffusion-matrix, modelling multispecies population dynamics driven by partial pressure gradients. These equations have recently been found to arise in a mean-field limit of interacting stochastic particle systems. To date, their analysis in multiple space dimensions has been confined to the purely convective case with equal mobility coefficients. In this article, we introduce a normal form for an entropic class of such equations which reveals their structure of a symmetric hyperbolic–parabolic system. Due to the state-dependence of the range and kernel of the singular diffusive matrix, our way of rewriting the equations is different from that classically used for symmetric second-order systems with a nullspace invariance property. By means of this change of variables, we solve the Cauchy problem for short times and positive initial data in for
不完全扩散交叉扩散系统的双曲-抛物范式和局部经典解
摘要我们研究了具有秩亏扩散矩阵的退化交叉扩散方程,模拟了由分压梯度驱动的多物种种群动力学。这些方程最近被发现出现在相互作用的随机粒子系统的平均场极限中。到目前为止,他们在多个空间维度上的分析仅限于具有相等迁移率系数的纯对流情况。在本文中,我们引入了一类熵方程的正规形式,它揭示了对称双曲-抛物系统的结构。由于奇异扩散矩阵的范围和核的状态依赖性,我们重写方程的方法不同于具有零空间不变性的对称二阶系统的经典方法。通过变量的这种变化,我们解决了Cauchy问题的短时间和正的初始数据
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信