Application of Finite Element Technique: A Review Study

Ali Khaleel Faraj, Hassan A. Abdul Hussein
{"title":"Application of Finite Element Technique: A Review Study","authors":"Ali Khaleel Faraj, Hassan A. Abdul Hussein","doi":"10.31699/ijcpe.2023.1.13","DOIUrl":null,"url":null,"abstract":"The finite element approach is used to solve a variety of difficulties, including well bore stability, fluid flow production and injection wells, mechanical issues and others. Geomechanics is a term that includes a number of important aspects in the petroleum industry, such as studying the changes that can be occur in oil reservoirs and geological structures, and providing a picture of oil well stability during drilling. The current review study concerned about the advancements in the application of the finite element method (FEM) in the geomechanical field over a course of century.\nFirstly, the study presented the early advancements of this method by development the structural framework of stress, make numerical computer solution for 2D thermal stress then stress analysis of the airplane. The second part focused on the most recent developments of FEM, and this method generates new techniques for solving these problems, such as the 1D, 2D, and 3D finite element models; the dynamic program method (DPM); the finite discrete element method (FDEM); and the finite element extended method (FEXM). The third part of this study presented the reservoir finite element simulation used for injection well testing inside unconsolidated oil sand reservoirs. Also improvement of the FE software program for the analyses, finite element extended approach to convert a 3D fault model were introduced. In addition, the study explored the development of a 3D and 4D model utilizing Visage for FEM analysis for geomechanics investigations, and the software eclipse for pressure drop prediction in carbonate reservoir weak formation and presented the Finite-Element Smoothed Particle Method (FESPM).","PeriodicalId":53067,"journal":{"name":"Iraqi Journal of Chemical and Petroleum Engineering","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iraqi Journal of Chemical and Petroleum Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31699/ijcpe.2023.1.13","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The finite element approach is used to solve a variety of difficulties, including well bore stability, fluid flow production and injection wells, mechanical issues and others. Geomechanics is a term that includes a number of important aspects in the petroleum industry, such as studying the changes that can be occur in oil reservoirs and geological structures, and providing a picture of oil well stability during drilling. The current review study concerned about the advancements in the application of the finite element method (FEM) in the geomechanical field over a course of century. Firstly, the study presented the early advancements of this method by development the structural framework of stress, make numerical computer solution for 2D thermal stress then stress analysis of the airplane. The second part focused on the most recent developments of FEM, and this method generates new techniques for solving these problems, such as the 1D, 2D, and 3D finite element models; the dynamic program method (DPM); the finite discrete element method (FDEM); and the finite element extended method (FEXM). The third part of this study presented the reservoir finite element simulation used for injection well testing inside unconsolidated oil sand reservoirs. Also improvement of the FE software program for the analyses, finite element extended approach to convert a 3D fault model were introduced. In addition, the study explored the development of a 3D and 4D model utilizing Visage for FEM analysis for geomechanics investigations, and the software eclipse for pressure drop prediction in carbonate reservoir weak formation and presented the Finite-Element Smoothed Particle Method (FESPM).
有限元技术的应用综述
有限元方法用于解决各种困难,包括井筒稳定性、流体流生产和注入井、力学问题和其他问题。地质力学是一个术语,包括石油工业中的许多重要方面,例如研究油藏和地质结构可能发生的变化,以及提供钻井过程中油井稳定性的图片。本综述研究关注一个世纪以来有限元法在地质力学领域的应用进展。首先,该研究通过开发应力的结构框架,对飞机的二维热应力进行计算机数值求解,然后进行应力分析,介绍了该方法的早期进展。第二部分重点介绍了FEM的最新发展,该方法产生了解决这些问题的新技术,如1D、2D和3D有限元模型;动态程序方法(DPM);有限离散元法;以及有限元扩展方法(FEXM)。本研究的第三部分介绍了用于疏松油砂油藏内部注水井测试的油藏有限元模拟。还介绍了对有限元分析软件程序的改进,以及转换三维故障模型的有限元扩展方法。此外,该研究还探索了利用Visage进行地质力学研究的有限元分析的3D和4D模型的开发,以及碳酸盐岩储层软弱地层压降预测软件eclipse的开发,并提出了有限元光滑粒子法(FESPM)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
26
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信