Hui Yang, Wuritu Yang, Fu-Ying Dao, Hao Lv, H. Ding, Wei Chen, Hao Lin
{"title":"A comparison and assessment of computational method for identifying recombination hotspots in Saccharomyces cerevisiae","authors":"Hui Yang, Wuritu Yang, Fu-Ying Dao, Hao Lv, H. Ding, Wei Chen, Hao Lin","doi":"10.1093/bib/bbz123","DOIUrl":null,"url":null,"abstract":"Meiotic recombination is one of the most important driving forces of biological evolution, which is initiated by double-strand DNA breaks. Recombination has important roles in genome diversity and evolution. This review firstly provides a comprehensive survey of the 15 computational methods developed for identifying recombination hotspots in Saccharomyces cerevisiae. These computational methods were discussed and compared in terms of underlying algorithms, extracted features, predictive capability and practical utility. Subsequently, a more objective benchmark data set was constructed to develop a new predictor iRSpot-Pse6NC2.0 (http://lin-group.cn/server/iRSpot-Pse6NC2.0). To further demonstrate the generalization ability of these methods, we compared iRSpot-Pse6NC2.0 with existing methods on the chromosome XVI of S. cerevisiae. The results of the independent data set test demonstrated that the new predictor is superior to existing tools in the identification of recombination hotspots. The iRSpot-Pse6NC2.0 will become an important tool for identifying recombination hotspot.","PeriodicalId":9209,"journal":{"name":"Briefings in bioinformatics","volume":" ","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2020-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1093/bib/bbz123","citationCount":"70","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Briefings in bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/bib/bbz123","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 70
Abstract
Meiotic recombination is one of the most important driving forces of biological evolution, which is initiated by double-strand DNA breaks. Recombination has important roles in genome diversity and evolution. This review firstly provides a comprehensive survey of the 15 computational methods developed for identifying recombination hotspots in Saccharomyces cerevisiae. These computational methods were discussed and compared in terms of underlying algorithms, extracted features, predictive capability and practical utility. Subsequently, a more objective benchmark data set was constructed to develop a new predictor iRSpot-Pse6NC2.0 (http://lin-group.cn/server/iRSpot-Pse6NC2.0). To further demonstrate the generalization ability of these methods, we compared iRSpot-Pse6NC2.0 with existing methods on the chromosome XVI of S. cerevisiae. The results of the independent data set test demonstrated that the new predictor is superior to existing tools in the identification of recombination hotspots. The iRSpot-Pse6NC2.0 will become an important tool for identifying recombination hotspot.
期刊介绍:
Briefings in Bioinformatics is an international journal serving as a platform for researchers and educators in the life sciences. It also appeals to mathematicians, statisticians, and computer scientists applying their expertise to biological challenges. The journal focuses on reviews tailored for users of databases and analytical tools in contemporary genetics, molecular and systems biology. It stands out by offering practical assistance and guidance to non-specialists in computerized methodologies. Covering a wide range from introductory concepts to specific protocols and analyses, the papers address bacterial, plant, fungal, animal, and human data.
The journal's detailed subject areas include genetic studies of phenotypes and genotypes, mapping, DNA sequencing, expression profiling, gene expression studies, microarrays, alignment methods, protein profiles and HMMs, lipids, metabolic and signaling pathways, structure determination and function prediction, phylogenetic studies, and education and training.