Surface Roughness Modeling of Material Extrusion PLA Flat Surfaces

IF 3.4 4区 化学 Q2 POLYMER SCIENCE
Kaltrine Jakupi, V. Dukovski, G. Hodolli
{"title":"Surface Roughness Modeling of Material Extrusion PLA Flat Surfaces","authors":"Kaltrine Jakupi, V. Dukovski, G. Hodolli","doi":"10.1155/2023/8844626","DOIUrl":null,"url":null,"abstract":"Complex forms may be easily created with additive manufacturing methods, but managing surface roughness remains a difficulty, even for flat surfaces, because surface quality is dependent on numerous parameters. This research investigates the effect of some printing factors on surface roughness in 3D printing methods. The purpose of this study is to quantify the most influential input printing factors on surface roughness in 3D printing processes. Polyacrylic acid thermoplastic was used to print workpieces, and mathematical models were generated using the regression method to analyze the relationship between process parameters and surface roughness. The exponential model fits the experimental data slightly better than the linear model. Only Ra-90 met all surface roughness classification requirements, while surface roughness measurements in the 0 and 45-degree directions did not meet the requirements and cannot be used to describe the surface roughness. The study highlights the importance of considering input printing parameters when optimizing surface roughness in 3D printing processes, providing valuable insights into the impact of process parameters on surface roughness.","PeriodicalId":14283,"journal":{"name":"International Journal of Polymer Science","volume":" ","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2023-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Polymer Science","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1155/2023/8844626","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 1

Abstract

Complex forms may be easily created with additive manufacturing methods, but managing surface roughness remains a difficulty, even for flat surfaces, because surface quality is dependent on numerous parameters. This research investigates the effect of some printing factors on surface roughness in 3D printing methods. The purpose of this study is to quantify the most influential input printing factors on surface roughness in 3D printing processes. Polyacrylic acid thermoplastic was used to print workpieces, and mathematical models were generated using the regression method to analyze the relationship between process parameters and surface roughness. The exponential model fits the experimental data slightly better than the linear model. Only Ra-90 met all surface roughness classification requirements, while surface roughness measurements in the 0 and 45-degree directions did not meet the requirements and cannot be used to describe the surface roughness. The study highlights the importance of considering input printing parameters when optimizing surface roughness in 3D printing processes, providing valuable insights into the impact of process parameters on surface roughness.
材料挤压PLA平面的表面粗糙度建模
使用增材制造方法可以很容易地创建复杂的形状,但是管理表面粗糙度仍然是一个困难,即使是平面,因为表面质量取决于许多参数。本文研究了3D打印方法中一些打印因素对表面粗糙度的影响。本研究的目的是量化3D打印过程中对表面粗糙度影响最大的输入打印因素。采用聚丙烯酸热塑性塑料对工件进行打印,利用回归方法建立数学模型,分析工艺参数与表面粗糙度之间的关系。指数模型对实验数据的拟合效果略好于线性模型。只有Ra-90满足所有表面粗糙度分类要求,而0度和45度方向的表面粗糙度测量不符合要求,不能用于描述表面粗糙度。该研究强调了在优化3D打印过程中表面粗糙度时考虑输入打印参数的重要性,为工艺参数对表面粗糙度的影响提供了有价值的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.10
自引率
0.00%
发文量
55
审稿时长
>12 weeks
期刊介绍: The International Journal of Polymer Science is a peer-reviewed, Open Access journal that publishes original research articles as well as review articles on the chemistry and physics of macromolecules.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信