{"title":"On association of lift generation, wake topology and kinematics of oscillating foils","authors":"Suyash Verma, M. Khalid, A. Hemmati","doi":"10.1177/17568293211073959","DOIUrl":null,"url":null,"abstract":"The association of lift generation and evolution of wake topology behind an oscillating foil with combined heaving and pitching motion is investigated numerically at a range of bluereduced frequency (0.16 ≤ f * ≤ 0.48), phase offset (0 ∘ ≤ ϕ ≤ 315 ∘ ) and Reynolds number (1000 ≤ R e ≤ 4000). The pitch-dominated kinematics that coincide with the range of ϕ ≤ 120 ∘ and ϕ ≥ 225 ∘ suggests that leading edge vortices are suppressed while trailing edge vortices dominate the wake with increasing reduced frequency. This corresponds to a transition in wake topology from a 2 P to a reverse Von Kármán wake mode. Contrarily, heave dominated kinematics (120 ∘ < ϕ ≤ 225 ∘ ) did not exhibit any wake topology transition with increasing f * . The temporal lift variation associated with heave-dominated regime further revealed a symmetric feature in terms of the time taken to attain peak lift generation within an oscillation cycle. This temporal symmetry was, however, lost as kinematics transitioned from heave- to pitch-dominated regime. Analyzing the wake evolution and lift features at quarter phase of an oscillation cycle revealed the existence of a correspondence between the two processes during the heave- and pitch-dominated kinematics.","PeriodicalId":49053,"journal":{"name":"International Journal of Micro Air Vehicles","volume":" ","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Micro Air Vehicles","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/17568293211073959","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 4
Abstract
The association of lift generation and evolution of wake topology behind an oscillating foil with combined heaving and pitching motion is investigated numerically at a range of bluereduced frequency (0.16 ≤ f * ≤ 0.48), phase offset (0 ∘ ≤ ϕ ≤ 315 ∘ ) and Reynolds number (1000 ≤ R e ≤ 4000). The pitch-dominated kinematics that coincide with the range of ϕ ≤ 120 ∘ and ϕ ≥ 225 ∘ suggests that leading edge vortices are suppressed while trailing edge vortices dominate the wake with increasing reduced frequency. This corresponds to a transition in wake topology from a 2 P to a reverse Von Kármán wake mode. Contrarily, heave dominated kinematics (120 ∘ < ϕ ≤ 225 ∘ ) did not exhibit any wake topology transition with increasing f * . The temporal lift variation associated with heave-dominated regime further revealed a symmetric feature in terms of the time taken to attain peak lift generation within an oscillation cycle. This temporal symmetry was, however, lost as kinematics transitioned from heave- to pitch-dominated regime. Analyzing the wake evolution and lift features at quarter phase of an oscillation cycle revealed the existence of a correspondence between the two processes during the heave- and pitch-dominated kinematics.
期刊介绍:
The role of the International Journal of Micro Air Vehicles is to provide the scientific and engineering community with a peer-reviewed open access journal dedicated to publishing high-quality technical articles summarizing both fundamental and applied research in the area of micro air vehicles.