Bringing Linearly Transformed Cosines to Anisotropic GGX

IF 1.4 Q3 COMPUTER SCIENCE, SOFTWARE ENGINEERING
T. AakashK., E. Heitz, J. Dupuy, P J Narayanan
{"title":"Bringing Linearly Transformed Cosines to Anisotropic GGX","authors":"T. AakashK., E. Heitz, J. Dupuy, P J Narayanan","doi":"10.1145/3522612","DOIUrl":null,"url":null,"abstract":"Linearly Transformed Cosines (LTCs) are a family of distributions that are used for real-time area-light shading thanks to their analytic integration properties. Modern game engines use an LTC approximation of the ubiquitous GGX model, but currently this approximation only exists for isotropic GGX and thus anisotropic GGX is not supported. While the higher dimensionality presents a challenge in itself, we show that several additional problems arise when fitting, post-processing, storing, and interpolating LTCs in the anisotropic case. Each of these operations must be done carefully to avoid rendering artifacts. We find robust solutions for each operation by introducing and exploiting invariance properties of LTCs. As a result, we obtain a small 84 look-up table that provides a plausible and artifact-free LTC approximation to anisotropic GGX and brings it to real-time area-light shading.","PeriodicalId":74536,"journal":{"name":"Proceedings of the ACM on computer graphics and interactive techniques","volume":"5 1","pages":"1 - 18"},"PeriodicalIF":1.4000,"publicationDate":"2022-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ACM on computer graphics and interactive techniques","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3522612","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 5

Abstract

Linearly Transformed Cosines (LTCs) are a family of distributions that are used for real-time area-light shading thanks to their analytic integration properties. Modern game engines use an LTC approximation of the ubiquitous GGX model, but currently this approximation only exists for isotropic GGX and thus anisotropic GGX is not supported. While the higher dimensionality presents a challenge in itself, we show that several additional problems arise when fitting, post-processing, storing, and interpolating LTCs in the anisotropic case. Each of these operations must be done carefully to avoid rendering artifacts. We find robust solutions for each operation by introducing and exploiting invariance properties of LTCs. As a result, we obtain a small 84 look-up table that provides a plausible and artifact-free LTC approximation to anisotropic GGX and brings it to real-time area-light shading.
将线性变换余弦引入各向异性GGX
线性变换余弦(LTCs)是一组分布,由于其分析积分特性,可用于实时区域明暗处理。现代游戏引擎使用普遍存在的GGX模型的LTC近似,但目前这种近似仅存在于各向同性GGX,因此不支持各向异性GGX。虽然更高的维度本身就存在挑战,但我们表明,在各向异性情况下,拟合、后处理、存储和插值LTCs时会出现几个额外的问题。这些操作中的每一个都必须小心完成,以避免呈现伪影。通过引入和利用LTCs的不变性,我们找到了每个运算的鲁棒解。因此,我们获得了一个小的84查找表,该表为各向异性GGX提供了一个合理且无伪影的LTC近似,并将其用于实时区域遮光。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.90
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信