{"title":"SPECTRA OF THE LOWER TRIANGULAR MATRIX B(r1, . . . , rl ; s1, . . . , sl ′) OVER c0","authors":"Sanjay Kumar Mahto, A. Patra, P. Srivastava","doi":"10.46793/kgjmat2203.369m","DOIUrl":null,"url":null,"abstract":"The inĄnite lower triangular matrix B(r1, . . . , rl ; s1, . . . , sl ′ ) is considered over the sequence space c0, where l and l ′ are positive integers. The diagonal and sub-diagonal entries of the matrix consist of the oscillatory sequences r = (rk(mod l)+1) and s = (sk(mod l ′)+1), respectively. The rest of the entries of the matrix are zero. It is shown that the matrix represents a bounded linear operator. Then the spectrum of the matrix is evaluated and partitioned into its Ąne structures: point spectrum, continuous spectrum, residual spectrum, etc. In particular, the spectra of the matrix B(r1, . . . , r4; s1, . . . , s6) are determined. Finally, an example is taken in support of the results","PeriodicalId":44902,"journal":{"name":"Kragujevac Journal of Mathematics","volume":" ","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Kragujevac Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46793/kgjmat2203.369m","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
The inĄnite lower triangular matrix B(r1, . . . , rl ; s1, . . . , sl ′ ) is considered over the sequence space c0, where l and l ′ are positive integers. The diagonal and sub-diagonal entries of the matrix consist of the oscillatory sequences r = (rk(mod l)+1) and s = (sk(mod l ′)+1), respectively. The rest of the entries of the matrix are zero. It is shown that the matrix represents a bounded linear operator. Then the spectrum of the matrix is evaluated and partitioned into its Ąne structures: point spectrum, continuous spectrum, residual spectrum, etc. In particular, the spectra of the matrix B(r1, . . . , r4; s1, . . . , s6) are determined. Finally, an example is taken in support of the results