SPECTRA OF THE LOWER TRIANGULAR MATRIX B(r1, . . . , rl ; s1, . . . , sl ′) OVER c0

IF 1 Q1 MATHEMATICS
Sanjay Kumar Mahto, A. Patra, P. Srivastava
{"title":"SPECTRA OF THE LOWER TRIANGULAR MATRIX B(r1, . . . , rl ; s1, . . . , sl ′) OVER c0","authors":"Sanjay Kumar Mahto, A. Patra, P. Srivastava","doi":"10.46793/kgjmat2203.369m","DOIUrl":null,"url":null,"abstract":"The inĄnite lower triangular matrix B(r1, . . . , rl ; s1, . . . , sl ′ ) is considered over the sequence space c0, where l and l ′ are positive integers. The diagonal and sub-diagonal entries of the matrix consist of the oscillatory sequences r = (rk(mod l)+1) and s = (sk(mod l ′)+1), respectively. The rest of the entries of the matrix are zero. It is shown that the matrix represents a bounded linear operator. Then the spectrum of the matrix is evaluated and partitioned into its Ąne structures: point spectrum, continuous spectrum, residual spectrum, etc. In particular, the spectra of the matrix B(r1, . . . , r4; s1, . . . , s6) are determined. Finally, an example is taken in support of the results","PeriodicalId":44902,"journal":{"name":"Kragujevac Journal of Mathematics","volume":" ","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Kragujevac Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46793/kgjmat2203.369m","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

The inĄnite lower triangular matrix B(r1, . . . , rl ; s1, . . . , sl ′ ) is considered over the sequence space c0, where l and l ′ are positive integers. The diagonal and sub-diagonal entries of the matrix consist of the oscillatory sequences r = (rk(mod l)+1) and s = (sk(mod l ′)+1), respectively. The rest of the entries of the matrix are zero. It is shown that the matrix represents a bounded linear operator. Then the spectrum of the matrix is evaluated and partitioned into its Ąne structures: point spectrum, continuous spectrum, residual spectrum, etc. In particular, the spectra of the matrix B(r1, . . . , r4; s1, . . . , s6) are determined. Finally, an example is taken in support of the results
c0上下三角矩阵B(r1,…,rl;s1,…,sl′)的谱
inĄnite下三角矩阵B(r1,…), r;1、……, sl ')考虑在序列空间c0上,其中l和l '是正整数。矩阵的对角项和次对角项分别由振荡序列r = (rk(mod l)+1)和s = (sk(mod l ')+1)组成。矩阵中其余的元素都是零。证明了该矩阵表示一个有界线性算子。然后对矩阵的谱进行评估,并将其划分为Ąne结构:点谱、连续谱、残差谱等。特别地,矩阵B(r1,…)的谱。r4;1、……(6)是确定的。最后,通过算例验证了本文的研究结果
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.50
自引率
0.00%
发文量
50
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信