Iterated Function Systems with the Weak Average Contraction Conditions

IF 0.4 Q4 MATHEMATICS
A. Ehsani, F. Ghane
{"title":"Iterated Function Systems with the Weak Average Contraction Conditions","authors":"A. Ehsani, F. Ghane","doi":"10.1080/1726037X.2019.1651492","DOIUrl":null,"url":null,"abstract":"Abstract This paper concerns the chaos game of random iterated function systems. We consider a random iterated function system IFS() generated by a finite family of Lipschitz maps on a compact ball of ℝn with the weak average contraction condition and show that it admits a quasi-attractor satisfying the deterministic chaos game. In particular, these properties are preserved under small perturbations of the iterated function system IFS() with respect to the Lipschitz topology.","PeriodicalId":42788,"journal":{"name":"Journal of Dynamical Systems and Geometric Theories","volume":"17 1","pages":"173 - 185"},"PeriodicalIF":0.4000,"publicationDate":"2019-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/1726037X.2019.1651492","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Dynamical Systems and Geometric Theories","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/1726037X.2019.1651492","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

Abstract

Abstract This paper concerns the chaos game of random iterated function systems. We consider a random iterated function system IFS() generated by a finite family of Lipschitz maps on a compact ball of ℝn with the weak average contraction condition and show that it admits a quasi-attractor satisfying the deterministic chaos game. In particular, these properties are preserved under small perturbations of the iterated function system IFS() with respect to the Lipschitz topology.
具有弱平均收缩条件的迭代函数系统
摘要本文研究随机迭代函数系统的混沌对策问题。考虑了一个随机迭代函数系统IFS(),该系统是由一个有限族的Lipschitz映射在一个具有弱平均收缩条件的紧球上生成的,并证明了它存在一个满足确定性混沌对策的拟吸引子。特别是,这些性质在迭代函数系统IFS()相对于Lipschitz拓扑的小扰动下保持不变。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
7
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信