Route lengths in invariant spatial tree networks

IF 0.5 4区 数学 Q4 STATISTICS & PROBABILITY
D. Aldous
{"title":"Route lengths in invariant spatial tree networks","authors":"D. Aldous","doi":"10.1214/21-ECP401","DOIUrl":null,"url":null,"abstract":"Is there a constant r0 such that, in any invariant tree network linking rate-1 Poisson points in the plane, the mean within-network distance between points at Euclidean distance r is infinite for r>r0? We prove a slightly weaker result. This is a continuum analog of a result of Benjamini et al (2001) on invariant spanning trees of the integer lattice.","PeriodicalId":50543,"journal":{"name":"Electronic Communications in Probability","volume":"26 1","pages":"1-12"},"PeriodicalIF":0.5000,"publicationDate":"2021-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Communications in Probability","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/21-ECP401","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

Is there a constant r0 such that, in any invariant tree network linking rate-1 Poisson points in the plane, the mean within-network distance between points at Euclidean distance r is infinite for r>r0? We prove a slightly weaker result. This is a continuum analog of a result of Benjamini et al (2001) on invariant spanning trees of the integer lattice.
不变空间树网络中的路由长度
是否存在常数r0,使得在连接平面中比率为1的泊松点的任何不变树网络中,对于r>r0,欧几里得距离r处的点之间的平均网络内距离是无限的?我们证明了一个稍微较弱的结果。这是Benjamini等人(2001)关于整数格的不变生成树的结果的连续体模拟。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Electronic Communications in Probability
Electronic Communications in Probability 工程技术-统计学与概率论
CiteScore
1.00
自引率
0.00%
发文量
38
审稿时长
6-12 weeks
期刊介绍: The Electronic Communications in Probability (ECP) publishes short research articles in probability theory. Its sister journal, the Electronic Journal of Probability (EJP), publishes full-length articles in probability theory. Short papers, those less than 12 pages, should be submitted to ECP first. EJP and ECP share the same editorial board, but with different Editors in Chief.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信