DIFFERENTIAL TRANSFORMATION METHOD FOR SOLVING MALARIA –HYGIENE MATHEMATICAL MODEL

O. Temidayo J., Azuaba Emmaunel, Sulemain Amina S
{"title":"DIFFERENTIAL TRANSFORMATION METHOD FOR SOLVING MALARIA –HYGIENE MATHEMATICAL MODEL","authors":"O. Temidayo J., Azuaba Emmaunel, Sulemain Amina S","doi":"10.26480/msmk.01.2021.01.05","DOIUrl":null,"url":null,"abstract":"In this study, we proposed a malaria-hygiene mathematical model using non-linear differential equation. The model equations are divided into seven compartments consisting of five human compartments (Hygienic Susceptible, Unhygienic Susceptible, Hygienic Infected, Unhygienic Infected, and Recovered) and two vector compartments (Non-Disease Carrier vector and Disease carrier vector). Differential Transformation Method (DTM) is applied to solve the mathematical model. The solutions obtained by DTM are compared with Runge-Kutta order 4th method (RK4). The graphical solutions illustrate similarity between DTM and RK4. It therefore imply that DTM can be consider a reliable alternative solution method.","PeriodicalId":32521,"journal":{"name":"Matrix Science Mathematic","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Matrix Science Mathematic","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26480/msmk.01.2021.01.05","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, we proposed a malaria-hygiene mathematical model using non-linear differential equation. The model equations are divided into seven compartments consisting of five human compartments (Hygienic Susceptible, Unhygienic Susceptible, Hygienic Infected, Unhygienic Infected, and Recovered) and two vector compartments (Non-Disease Carrier vector and Disease carrier vector). Differential Transformation Method (DTM) is applied to solve the mathematical model. The solutions obtained by DTM are compared with Runge-Kutta order 4th method (RK4). The graphical solutions illustrate similarity between DTM and RK4. It therefore imply that DTM can be consider a reliable alternative solution method.
求解疟疾卫生数学模型的微分变换方法
在这项研究中,我们提出了一个非线性微分方程的疟疾卫生数学模型。模型方程分为7个隔间,包括5个人体隔间(卫生易感、不卫生易感、卫生感染、不卫生感染和康复)和2个媒介隔间(非疾病载体和疾病载体)。采用微分变换法(DTM)求解数学模型。并与龙格-库塔四阶方法(RK4)进行了比较。图形解决方案说明了DTM和RK4之间的相似性。因此,这意味着DTM可以被认为是一种可靠的替代解决方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信