Lisa Claus, P. Ghysels, Yang Liu, T. Nhan, R. Thirumalaisamy, A. Bhalla, Sherry Li
{"title":"Sparse Approximate Multifrontal Factorization with Composite Compression Methods","authors":"Lisa Claus, P. Ghysels, Yang Liu, T. Nhan, R. Thirumalaisamy, A. Bhalla, Sherry Li","doi":"10.1145/3611662","DOIUrl":null,"url":null,"abstract":"This article presents a fast and approximate multifrontal solver for large sparse linear systems. In a recent work by Liu et al., we showed the efficiency of a multifrontal solver leveraging the butterfly algorithm and its hierarchical matrix extension, HODBF (hierarchical off-diagonal butterfly) compression to compress large frontal matrices. The resulting multifrontal solver can attain quasi-linear computation and memory complexity when applied to sparse linear systems arising from spatial discretization of high-frequency wave equations. To further reduce the overall number of operations and especially the factorization memory usage to scale to larger problem sizes, in this article we develop a composite multifrontal solver that employs the HODBF format for large-sized fronts, a reduced-memory version of the nonhierarchical block low-rank format for medium-sized fronts, and a lossy compression format for small-sized fronts. This allows us to solve sparse linear systems of dimension up to 2.7 × larger than before and leads to a memory consumption that is reduced by 70% while ensuring the same execution time. The code is made publicly available in GitHub.","PeriodicalId":50935,"journal":{"name":"ACM Transactions on Mathematical Software","volume":"49 1","pages":"1 - 28"},"PeriodicalIF":2.7000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Mathematical Software","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3611662","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
This article presents a fast and approximate multifrontal solver for large sparse linear systems. In a recent work by Liu et al., we showed the efficiency of a multifrontal solver leveraging the butterfly algorithm and its hierarchical matrix extension, HODBF (hierarchical off-diagonal butterfly) compression to compress large frontal matrices. The resulting multifrontal solver can attain quasi-linear computation and memory complexity when applied to sparse linear systems arising from spatial discretization of high-frequency wave equations. To further reduce the overall number of operations and especially the factorization memory usage to scale to larger problem sizes, in this article we develop a composite multifrontal solver that employs the HODBF format for large-sized fronts, a reduced-memory version of the nonhierarchical block low-rank format for medium-sized fronts, and a lossy compression format for small-sized fronts. This allows us to solve sparse linear systems of dimension up to 2.7 × larger than before and leads to a memory consumption that is reduced by 70% while ensuring the same execution time. The code is made publicly available in GitHub.
期刊介绍:
As a scientific journal, ACM Transactions on Mathematical Software (TOMS) documents the theoretical underpinnings of numeric, symbolic, algebraic, and geometric computing applications. It focuses on analysis and construction of algorithms and programs, and the interaction of programs and architecture. Algorithms documented in TOMS are available as the Collected Algorithms of the ACM at calgo.acm.org.