Performance analysis of a novel solar radiation cascade conversion system for combined heat and power generation based on spectrum splitting and reshaping

IF 1.9 4区 工程技术 Q4 ENERGY & FUELS
Haojin Wu, Shi-quan Shan, Zhijun Zhou
{"title":"Performance analysis of a novel solar radiation cascade conversion system for combined heat and power generation based on spectrum splitting and reshaping","authors":"Haojin Wu, Shi-quan Shan, Zhijun Zhou","doi":"10.1063/5.0145302","DOIUrl":null,"url":null,"abstract":"In this paper, a novel cascading solar photovoltaic system with concentrating spectrum splitting and reshaping for combined heat and power generation is proposed for the first time to break through the limitations of photovoltaic efficiency. Two spectral splitters divide the solar spectrum into three parts, and each part of the spectrum is used by photovoltaics, thermophotovoltaics, and heat exchange fluids according to the photon grade. In addition, the heat exchange fluid also recovers the waste heat of concentrating photovoltaic and thermophotovoltaic cells. Therefore, the system achieves solar energy cascade utilization and has high electrical and thermal efficiency simultaneously. The effect of the fluid flow rate, solar irradiance, and cutoff wavelength of the spectral splitter on the hybrid system is discussed. The results show that under the conditions of 1000 sunlight and outlet fluid temperature of 60 °C, the solar energy conversion rate and exergy efficiency of the hybrid system are 90.17% and 39.84%, which are 63.97 percentage points and 11.62 percentage points higher than those of the single photovoltaic system, respectively.","PeriodicalId":16953,"journal":{"name":"Journal of Renewable and Sustainable Energy","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Renewable and Sustainable Energy","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1063/5.0145302","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, a novel cascading solar photovoltaic system with concentrating spectrum splitting and reshaping for combined heat and power generation is proposed for the first time to break through the limitations of photovoltaic efficiency. Two spectral splitters divide the solar spectrum into three parts, and each part of the spectrum is used by photovoltaics, thermophotovoltaics, and heat exchange fluids according to the photon grade. In addition, the heat exchange fluid also recovers the waste heat of concentrating photovoltaic and thermophotovoltaic cells. Therefore, the system achieves solar energy cascade utilization and has high electrical and thermal efficiency simultaneously. The effect of the fluid flow rate, solar irradiance, and cutoff wavelength of the spectral splitter on the hybrid system is discussed. The results show that under the conditions of 1000 sunlight and outlet fluid temperature of 60 °C, the solar energy conversion rate and exergy efficiency of the hybrid system are 90.17% and 39.84%, which are 63.97 percentage points and 11.62 percentage points higher than those of the single photovoltaic system, respectively.
基于光谱分裂和整形的新型热电联产太阳辐射级联转换系统的性能分析
为了突破光伏效率的限制,本文首次提出了一种集聚光谱分裂和整形的热电联产级联太阳能光伏系统。两个分光器将太阳光谱分为三部分,每个部分的光谱根据光子等级被光伏、热光伏和热交换流体使用。此外,热交换流体还回收聚光光伏和热光伏电池的废热。因此,该系统实现了太阳能的梯级利用,同时具有高的电效率和热效率。讨论了流体流速、太阳辐照度和分光器截止波长对混合系统的影响。结果表明,在1000太阳光、出口流体温度为60℃的条件下 °C时,混合系统的太阳能转化率和(火用)效率分别为90.17%和39.84%,分别比单一光伏系统高63.97个百分点和11.62个百分点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Renewable and Sustainable Energy
Journal of Renewable and Sustainable Energy ENERGY & FUELS-ENERGY & FUELS
CiteScore
4.30
自引率
12.00%
发文量
122
审稿时长
4.2 months
期刊介绍: The Journal of Renewable and Sustainable Energy (JRSE) is an interdisciplinary, peer-reviewed journal covering all areas of renewable and sustainable energy relevant to the physical science and engineering communities. The interdisciplinary approach of the publication ensures that the editors draw from researchers worldwide in a diverse range of fields. Topics covered include: Renewable energy economics and policy Renewable energy resource assessment Solar energy: photovoltaics, solar thermal energy, solar energy for fuels Wind energy: wind farms, rotors and blades, on- and offshore wind conditions, aerodynamics, fluid dynamics Bioenergy: biofuels, biomass conversion, artificial photosynthesis Distributed energy generation: rooftop PV, distributed fuel cells, distributed wind, micro-hydrogen power generation Power distribution & systems modeling: power electronics and controls, smart grid Energy efficient buildings: smart windows, PV, wind, power management Energy conversion: flexoelectric, piezoelectric, thermoelectric, other technologies Energy storage: batteries, supercapacitors, hydrogen storage, other fuels Fuel cells: proton exchange membrane cells, solid oxide cells, hybrid fuel cells, other Marine and hydroelectric energy: dams, tides, waves, other Transportation: alternative vehicle technologies, plug-in technologies, other Geothermal energy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信