Integral quantum cluster structures

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
K. Goodearl, M. Yakimov
{"title":"Integral quantum cluster structures","authors":"K. Goodearl, M. Yakimov","doi":"10.1215/00127094-2020-0061","DOIUrl":null,"url":null,"abstract":"We prove a general theorem for constructing integral quantum cluster algebras over ${\\mathbb{Z}}[q^{\\pm 1/2}]$, namely that under mild conditions the integral forms of quantum nilpotent algebras always possess integral quantum cluster algebra structures. These algebras are then shown to be isomorphic to the corresponding upper quantum cluster algebras, again defined over ${\\mathbb{Z}}[q^{\\pm 1/2}]$. Previously, this was only known for acyclic quantum cluster algebras. The theorem is applied to prove that for every symmetrizable Kac-Moody algebra ${\\mathfrak{g}}$ and Weyl group element $w$, the dual canonical form $A_q({\\mathfrak{n}}_+(w))_{\\mathbb{Z}[q^{\\pm 1}]}$ of the corresponding quantum unipotent cell has the property that $A_q( {\\mathfrak{n}}_+(w))_{\\mathbb{Z}[q^{\\pm 1}]} \\otimes_{\\mathbb{Z}[q^{ \\pm 1}]} {\\mathbb{Z}}[ q^{\\pm 1/2}]$ is isomorphic to a quantum cluster algebra over ${\\mathbb{Z}}[q^{\\pm 1/2}]$ and to the corresponding upper quantum cluster algebra over ${\\mathbb{Z}}[q^{\\pm 1/2}]$.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2020-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1215/00127094-2020-0061","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 10

Abstract

We prove a general theorem for constructing integral quantum cluster algebras over ${\mathbb{Z}}[q^{\pm 1/2}]$, namely that under mild conditions the integral forms of quantum nilpotent algebras always possess integral quantum cluster algebra structures. These algebras are then shown to be isomorphic to the corresponding upper quantum cluster algebras, again defined over ${\mathbb{Z}}[q^{\pm 1/2}]$. Previously, this was only known for acyclic quantum cluster algebras. The theorem is applied to prove that for every symmetrizable Kac-Moody algebra ${\mathfrak{g}}$ and Weyl group element $w$, the dual canonical form $A_q({\mathfrak{n}}_+(w))_{\mathbb{Z}[q^{\pm 1}]}$ of the corresponding quantum unipotent cell has the property that $A_q( {\mathfrak{n}}_+(w))_{\mathbb{Z}[q^{\pm 1}]} \otimes_{\mathbb{Z}[q^{ \pm 1}]} {\mathbb{Z}}[ q^{\pm 1/2}]$ is isomorphic to a quantum cluster algebra over ${\mathbb{Z}}[q^{\pm 1/2}]$ and to the corresponding upper quantum cluster algebra over ${\mathbb{Z}}[q^{\pm 1/2}]$.
积分量子团簇结构
我们证明了在${\mathbb{Z}}[q^{\pm 1/2}]$上构造积分量子簇代数的一个一般定理,即在温和条件下,量子幂零代数的积分形式总是具有积分量子簇代结构。然后,这些代数被证明同构于相应的上量子簇代数,再次在${\mathbb{Z}}[q^{\pm 1/2}]$上定义。以前,这只为非循环量子簇代数所知。应用该定理证明了对于每一个可对称的Kac-Moody代数${\mathfrak{g}}$和Weyl群元素$w$,对应量子单势单元的对偶正则形式$A_q({\mathfrak{n}}_+(w))_{\math bb{Z}[q^{\pm 1}]}$具有$A_q}[q^{\pm 1/2}]$和${\mathbb上相应的上量子簇代数{Z} {q^{\pm 1/2}]$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信