Singularity of the k-core of a random graph

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Asaf Ferber, Matthew Kwan, A. Sah, Mehtaab Sawhney
{"title":"Singularity of the k-core of a random graph","authors":"Asaf Ferber, Matthew Kwan, A. Sah, Mehtaab Sawhney","doi":"10.1215/00127094-2022-0060","DOIUrl":null,"url":null,"abstract":"Very sparse random graphs are known to typically be singular (i.e., have singular adjacency matrix), due to the presence of\"low-degree dependencies'' such as isolated vertices and pairs of degree-1 vertices with the same neighbourhood. We prove that these kinds of dependencies are in some sense the only causes of singularity: for constants $k\\ge 3$ and $\\lambda>0$, an Erd\\H os--R\\'enyi random graph $G\\sim\\mathbb{G}(n,\\lambda/n)$ with $n$ vertices and edge probability $\\lambda/n$ typically has the property that its $k$-core (its largest subgraph with minimum degree at least $k$) is nonsingular. This resolves a conjecture of Vu from the 2014 International Congress of Mathematicians, and adds to a short list of known nonsingularity theorems for\"extremely sparse'' random matrices with density $O(1/n)$. A key aspect of our proof is a technique to extract high-degree vertices and use them to\"boost'' the rank, starting from approximate rank bounds obtainable from (non-quantitative) spectral convergence machinery due to Bordenave, Lelarge and Salez.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2021-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1215/00127094-2022-0060","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 7

Abstract

Very sparse random graphs are known to typically be singular (i.e., have singular adjacency matrix), due to the presence of"low-degree dependencies'' such as isolated vertices and pairs of degree-1 vertices with the same neighbourhood. We prove that these kinds of dependencies are in some sense the only causes of singularity: for constants $k\ge 3$ and $\lambda>0$, an Erd\H os--R\'enyi random graph $G\sim\mathbb{G}(n,\lambda/n)$ with $n$ vertices and edge probability $\lambda/n$ typically has the property that its $k$-core (its largest subgraph with minimum degree at least $k$) is nonsingular. This resolves a conjecture of Vu from the 2014 International Congress of Mathematicians, and adds to a short list of known nonsingularity theorems for"extremely sparse'' random matrices with density $O(1/n)$. A key aspect of our proof is a technique to extract high-degree vertices and use them to"boost'' the rank, starting from approximate rank bounds obtainable from (non-quantitative) spectral convergence machinery due to Bordenave, Lelarge and Salez.
随机图k核的奇异性
已知非常稀疏的随机图通常是奇异的(即具有奇异邻接矩阵),由于存在“低度依赖性”,如孤立顶点和具有相同邻域的一对1度顶点。我们证明了这些类型的依赖性在某种意义上是奇异性的唯一原因:对于常数$k\ge3$和$\lambda>0$,Erd\H os-R\'enyi随机图$G\sim\mathbb{G}(n,\lambda/n)具有$n$顶点和边概率$\lambda/n$的$通常具有其$k$核(其最小度至少为$k$的最大子图)是非奇异的性质。这解决了2014年国际数学家大会上Vu的一个猜想,并为密度为$O(1/n)$的“极稀疏”随机矩阵的已知非奇异性定理添加了一个简短的列表。我们证明的一个关键方面是提取高阶顶点并使用它们来“提高”秩的技术,从由Bordnave、Lelarge和Salez引起的(非定量的)谱收敛机制可获得的近似秩界开始。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信