Heather D. Whitehead, Kathleen L. Hayes, James F. Swartz, Marya Lieberman
{"title":"Development and validation of a liquid chromatography tandem mass spectrometry method for the analysis of 53 benzodiazepines in illicit drug samples.","authors":"Heather D. Whitehead, Kathleen L. Hayes, James F. Swartz, Marya Lieberman","doi":"10.2139/ssrn.4393461","DOIUrl":null,"url":null,"abstract":"An LC-MS/MS method for the analysis of 53 benzodiazepines, including various designer benzodiazepines, was developed. The developed method was applied to a total of 79 illicit street drug samples collected in Chicago, IL. Of these samples, 68 (84%) had detectable amounts of at least one benzodiazepine. Further, of the 53 benzodiazepines included in the developed method just 14 were measured in samples. Clonazolam, a potent designer benzodiazepine and derivative of clonazepam, was the most frequently measured benzodiazepine in 63% of samples and was measured in the highest concentrations. Other benzodiazepines measured in more than 10% of samples included clonazepam, alprazolam, flualprazolam, and oxazepam. Mixtures of benzodiazepines were frequently measured in samples, with just 24% of samples containing just one benzodiazepine. To determine the response of benzodiazepines on a rapid, point-of-use drug checking tool, all 53 benzodiazepine standards were screened on a lateral flow immunoassay benzodiazepine test strip. Sixty eight percent of standards gave a positive BTS response at a concentration of 20 μg/mL, demonstrating BTS have response to a wide variety of benzodiazepines, including many designer benzodiazepines. A comparison of this data to previous data reported for the same samples demonstrated all samples containing a benzodiazepine also had an opioid present, with fentanyl being present in 94% of benzodiazepine samples. These results highlight high rates of polysubstance drug presence in Chicago, IL illicit drug samples, posing an increased risk of drug overdoses in people who use drugs.","PeriodicalId":324,"journal":{"name":"Forensic Chemistry","volume":"35 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forensic Chemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2139/ssrn.4393461","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
An LC-MS/MS method for the analysis of 53 benzodiazepines, including various designer benzodiazepines, was developed. The developed method was applied to a total of 79 illicit street drug samples collected in Chicago, IL. Of these samples, 68 (84%) had detectable amounts of at least one benzodiazepine. Further, of the 53 benzodiazepines included in the developed method just 14 were measured in samples. Clonazolam, a potent designer benzodiazepine and derivative of clonazepam, was the most frequently measured benzodiazepine in 63% of samples and was measured in the highest concentrations. Other benzodiazepines measured in more than 10% of samples included clonazepam, alprazolam, flualprazolam, and oxazepam. Mixtures of benzodiazepines were frequently measured in samples, with just 24% of samples containing just one benzodiazepine. To determine the response of benzodiazepines on a rapid, point-of-use drug checking tool, all 53 benzodiazepine standards were screened on a lateral flow immunoassay benzodiazepine test strip. Sixty eight percent of standards gave a positive BTS response at a concentration of 20 μg/mL, demonstrating BTS have response to a wide variety of benzodiazepines, including many designer benzodiazepines. A comparison of this data to previous data reported for the same samples demonstrated all samples containing a benzodiazepine also had an opioid present, with fentanyl being present in 94% of benzodiazepine samples. These results highlight high rates of polysubstance drug presence in Chicago, IL illicit drug samples, posing an increased risk of drug overdoses in people who use drugs.
期刊介绍:
Forensic Chemistry publishes high quality manuscripts focusing on the theory, research and application of any chemical science to forensic analysis. The scope of the journal includes fundamental advancements that result in a better understanding of the evidentiary significance derived from the physical and chemical analysis of materials. The scope of Forensic Chemistry will also include the application and or development of any molecular and atomic spectrochemical technique, electrochemical techniques, sensors, surface characterization techniques, mass spectrometry, nuclear magnetic resonance, chemometrics and statistics, and separation sciences (e.g. chromatography) that provide insight into the forensic analysis of materials. Evidential topics of interest to the journal include, but are not limited to, fingerprint analysis, drug analysis, ignitable liquid residue analysis, explosives detection and analysis, the characterization and comparison of trace evidence (glass, fibers, paints and polymers, tapes, soils and other materials), ink and paper analysis, gunshot residue analysis, synthetic pathways for drugs, toxicology and the analysis and chemistry associated with the components of fingermarks. The journal is particularly interested in receiving manuscripts that report advances in the forensic interpretation of chemical evidence. Technology Readiness Level: When submitting an article to Forensic Chemistry, all authors will be asked to self-assign a Technology Readiness Level (TRL) to their article. The purpose of the TRL system is to help readers understand the level of maturity of an idea or method, to help track the evolution of readiness of a given technique or method, and to help filter published articles by the expected ease of implementation in an operation setting within a crime lab.