Monitoring the the Impacts of Climate Change and Variability on the Phenology of Natural Vegetation Using 250m MODIS-NDVI Satellite Data: Cace Study of the Dryland Ecosystem of Sokoto, North-Westrn Nigeria.
A. M. Jibrillah, Nathanial Bayode Eniolorunda, G. A. Budah, Dalhatu Ahmad
{"title":"Monitoring the the Impacts of Climate Change and Variability on the Phenology of Natural Vegetation Using 250m MODIS-NDVI Satellite Data: Cace Study of the Dryland Ecosystem of Sokoto, North-Westrn Nigeria.","authors":"A. M. Jibrillah, Nathanial Bayode Eniolorunda, G. A. Budah, Dalhatu Ahmad","doi":"10.22146/ijg.61697","DOIUrl":null,"url":null,"abstract":"Recent climate change and variability together with other anthropogenic drivers have exerted tremendous pressure on the fragile dryland ecosystem of Sokoto, North-western Nigeria. Vegetation phenology is one of the active indicators of the impacts of climate change on the ecosystem. This study aimed to monitor how the ecosystem of the area responds to the challenges associated with climate change in order to provide baseline information for policies and programmes geared towards addressing these challenges. It explored the applications of remote sensing data (MODIS-NDVI), GIS and statistical analyses in achieving this aim. Image processing operations such as data extraction, raster calculations, geometric transformations and creation of the region of interest were conducted using ArcGIS 10.5 model builder while TIMESAT software was used determined the vegetation phenological events such as the start, end and length of the growing seasons. The results indicated a persistent decline in the length of the growing seasons of the major vegetation classes in the area due to late onset and early cessation of the growing season which is positively correlated with rainfall distribution. From the year 2001 to 2016, 36% and 33% declined in the length of the growing season were recorded for shrubs and grasses respectively. These are positively correlated with the annual rainfall distributions in the area, with the correlation coefficient of r = 0.40 and r = 0.36 for the shrubs and grasses respectively. Implications of these on the ecosystem and livelihoods of the people in the area were discussed and ways forward suggested.","PeriodicalId":52460,"journal":{"name":"Indonesian Journal of Geography","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indonesian Journal of Geography","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22146/ijg.61697","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Social Sciences","Score":null,"Total":0}
引用次数: 0
Abstract
Recent climate change and variability together with other anthropogenic drivers have exerted tremendous pressure on the fragile dryland ecosystem of Sokoto, North-western Nigeria. Vegetation phenology is one of the active indicators of the impacts of climate change on the ecosystem. This study aimed to monitor how the ecosystem of the area responds to the challenges associated with climate change in order to provide baseline information for policies and programmes geared towards addressing these challenges. It explored the applications of remote sensing data (MODIS-NDVI), GIS and statistical analyses in achieving this aim. Image processing operations such as data extraction, raster calculations, geometric transformations and creation of the region of interest were conducted using ArcGIS 10.5 model builder while TIMESAT software was used determined the vegetation phenological events such as the start, end and length of the growing seasons. The results indicated a persistent decline in the length of the growing seasons of the major vegetation classes in the area due to late onset and early cessation of the growing season which is positively correlated with rainfall distribution. From the year 2001 to 2016, 36% and 33% declined in the length of the growing season were recorded for shrubs and grasses respectively. These are positively correlated with the annual rainfall distributions in the area, with the correlation coefficient of r = 0.40 and r = 0.36 for the shrubs and grasses respectively. Implications of these on the ecosystem and livelihoods of the people in the area were discussed and ways forward suggested.
期刊介绍:
Indonesian Journal of Geography ISSN 2354-9114 (online), ISSN 0024-9521 (print) is an international journal published by the Faculty of Geography, Universitas Gadjah Mada in collaboration with The Indonesian Geographers Association. Our scope of publications include physical geography, human geography, regional planning and development, cartography, remote sensing, geographic information system, environmental science, and social science. IJG publishes its issues three times a year in April, August, and December. Indonesian Journal of Geography welcomes high-quality original and well-written manuscripts on any of the following topics: 1. Geomorphology 2. Climatology 3. Biogeography 4. Soils Geography 5. Population Geography 6. Behavioral Geography 7. Economic Geography 8. Political Geography 9. Historical Geography 10. Geographic Information Systems 11. Cartography 12. Quantification Methods in Geography 13. Remote Sensing 14. Regional development and planning 15. Disaster The Journal publishes Research Articles, Review Article, Short Communications, Comments/Responses and Corrections