The Mirković–Vilonen basis and Duistermaat–Heckman measures

IF 5.4 3区 材料科学 Q2 CHEMISTRY, PHYSICAL
Pierre Baumann, J. Kamnitzer, A. Knutson
{"title":"The Mirković–Vilonen basis and Duistermaat–Heckman measures","authors":"Pierre Baumann, J. Kamnitzer, A. Knutson","doi":"10.4310/acta.2021.v227.n1.a1","DOIUrl":null,"url":null,"abstract":"Using the geometric Satake correspondence, the Mirkovic-Vilonen cycles in the affine Grasssmannian give bases for representations of a semisimple group G . We prove that these bases are \"perfect\", i.e. compatible with the action of the Chevelley generators of the positive half of the Lie algebra g. We compute this action in terms of intersection multiplicities in the affine Grassmannian. We prove that these bases stitch together to a basis for the algebra C[N] of regular functions on the unipotent subgroup. We compute the multiplication in this MV basis using intersection multiplicities in the Beilinson-Drinfeld Grassmannian, thus proving a conjecture of Anderson. In the third part of the paper, we define a map from C[N] to a convolution algebra of measures on the dual of the Cartan subalgebra of g. We characterize this map using the universal centralizer space of G. We prove that the measure associated to an MV basis element equals the Duistermaat-Heckman measure of the corresponding MV cycle. This leads to a proof of a conjecture of Muthiah. Finally, we use the map to measures to compare the MV basis and Lusztig's dual semicanonical basis. We formulate conjectures relating the algebraic invariants of preprojective algebra modules (which underlie the dual semicanonical basis) and geometric invariants of MV cycles. In the appendix, we use these ideas to prove that the MV basis and the dual semicanonical basis do not coincide in SL_6.","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2019-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/acta.2021.v227.n1.a1","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 19

Abstract

Using the geometric Satake correspondence, the Mirkovic-Vilonen cycles in the affine Grasssmannian give bases for representations of a semisimple group G . We prove that these bases are "perfect", i.e. compatible with the action of the Chevelley generators of the positive half of the Lie algebra g. We compute this action in terms of intersection multiplicities in the affine Grassmannian. We prove that these bases stitch together to a basis for the algebra C[N] of regular functions on the unipotent subgroup. We compute the multiplication in this MV basis using intersection multiplicities in the Beilinson-Drinfeld Grassmannian, thus proving a conjecture of Anderson. In the third part of the paper, we define a map from C[N] to a convolution algebra of measures on the dual of the Cartan subalgebra of g. We characterize this map using the universal centralizer space of G. We prove that the measure associated to an MV basis element equals the Duistermaat-Heckman measure of the corresponding MV cycle. This leads to a proof of a conjecture of Muthiah. Finally, we use the map to measures to compare the MV basis and Lusztig's dual semicanonical basis. We formulate conjectures relating the algebraic invariants of preprojective algebra modules (which underlie the dual semicanonical basis) and geometric invariants of MV cycles. In the appendix, we use these ideas to prove that the MV basis and the dual semicanonical basis do not coincide in SL_6.
Mirković-Vilonen基础和Duistermaat-Heckman测量
利用几何Satake对应,仿射grassmannian中的Mirkovic-Vilonen环给出了半单群G的表示基。我们证明了这些基是“完美的”,即与李代数g的正一半的Chevelley发生器的作用相容。我们用仿射格拉斯曼的交多重来计算这种作用。我们证明了这些基拼接在一起,成为幂偶子群上正则函数的代数C[N]的一组基。我们使用Beilinson-Drinfeld - Grassmannian中的交多重计算了这个MV基中的乘法,从而证明了Anderson的一个猜想。在论文的第三部分,我们定义了一个从C[N]到测度的卷积代数在g的Cartan子代数的对偶上的映射。我们利用g的通用正化空间刻画了这个映射。我们证明了与一个MV基元相关联的测度等于相应MV循环的Duistermaat-Heckman测度。这就引出了对穆提亚猜想的证明。最后,我们使用映射度量来比较MV基和Lusztig的对偶半标准基。我们提出了关于预投影代数模的代数不变量(它是对偶半模范基的基础)和MV循环的几何不变量的猜想。在附录中,我们用这些思想证明了在SL_6中MV基和对偶半正则基不重合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Energy Materials
ACS Applied Energy Materials Materials Science-Materials Chemistry
CiteScore
10.30
自引率
6.20%
发文量
1368
期刊介绍: ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信