Centered Hardy-Littlewood maximal function on product manifolds

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Shiliang Zhao
{"title":"Centered Hardy-Littlewood maximal function on product manifolds","authors":"Shiliang Zhao","doi":"10.1515/anona-2021-0233","DOIUrl":null,"url":null,"abstract":"Abstract Let X be the direct product of Xi where Xi is smooth manifold for 1 ≤ i ≤ k. As is known, if every Xi satisfies the doubling volume condition, then the centered Hardy-Littlewood maximal function M on X is weak (1,1) bounded. In this paper, we consider the product manifold X where at least one Xi does not satisfy the doubling volume condition. To be precise, we first investigate the mapping properties of M when X1 has exponential volume growth and X2 satisfies the doubling condition. Next, we consider the product space of two weighted hyperbolic spaces X1 = (ℍn+1, d, yα−n−1dydx) and X2 = (ℍn+1, d, yβ−n−1dydx) which both have exponential volume growth. The mapping properties of M are discussed for every α,β≠n2 \\alpha,\\beta \\ne {n \\over 2} . Furthermore, let X = X1 × X2 × … Xk where Xi = (ℍni+1, yαi−ni−1dydx) for 1 ≤ i ≤ k. Under the condition αi>ni2 {\\alpha_i} > {{{n_i}} \\over 2} , we also obtained the mapping properties of M.","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/anona-2021-0233","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract Let X be the direct product of Xi where Xi is smooth manifold for 1 ≤ i ≤ k. As is known, if every Xi satisfies the doubling volume condition, then the centered Hardy-Littlewood maximal function M on X is weak (1,1) bounded. In this paper, we consider the product manifold X where at least one Xi does not satisfy the doubling volume condition. To be precise, we first investigate the mapping properties of M when X1 has exponential volume growth and X2 satisfies the doubling condition. Next, we consider the product space of two weighted hyperbolic spaces X1 = (ℍn+1, d, yα−n−1dydx) and X2 = (ℍn+1, d, yβ−n−1dydx) which both have exponential volume growth. The mapping properties of M are discussed for every α,β≠n2 \alpha,\beta \ne {n \over 2} . Furthermore, let X = X1 × X2 × … Xk where Xi = (ℍni+1, yαi−ni−1dydx) for 1 ≤ i ≤ k. Under the condition αi>ni2 {\alpha_i} > {{{n_i}} \over 2} , we also obtained the mapping properties of M.
乘积流形上的中心Hardy-Littlewood极大函数
摘要设X是Xi的直积,其中Xi是1≤i≤k的光滑流形。众所周知,如果每个Xi满足加倍体积条件,则X上的中心Hardy-Littlewood极大函数M是弱(1,1)有界的。在本文中,我们考虑乘积流形X,其中至少一个Xi不满足加倍体积条件。确切地说,我们首先研究了当X1具有指数体积增长并且X2满足加倍条件时M的映射性质。接下来,我们考虑两个加权双曲空间的乘积空间X1=(ℍn+1,d,yα−n−1dydx)和X2=(ℍn+1,d,yβ−n−1dydx),它们都具有指数体积增长。讨论了2}上每个α,β≠n2\alpha,β-ne的M的映射性质。此外,设X=X1×X2×…Xk,其中Xi=(ℍni+1,yαi−ni−1dydx)对于1≤i≤k。在αi>ni2{\alpha_i}>{{n_i}}\在2}上的条件下,我们还得到了M的映射性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信