{"title":"Centered Hardy-Littlewood maximal function on product manifolds","authors":"Shiliang Zhao","doi":"10.1515/anona-2021-0233","DOIUrl":null,"url":null,"abstract":"Abstract Let X be the direct product of Xi where Xi is smooth manifold for 1 ≤ i ≤ k. As is known, if every Xi satisfies the doubling volume condition, then the centered Hardy-Littlewood maximal function M on X is weak (1,1) bounded. In this paper, we consider the product manifold X where at least one Xi does not satisfy the doubling volume condition. To be precise, we first investigate the mapping properties of M when X1 has exponential volume growth and X2 satisfies the doubling condition. Next, we consider the product space of two weighted hyperbolic spaces X1 = (ℍn+1, d, yα−n−1dydx) and X2 = (ℍn+1, d, yβ−n−1dydx) which both have exponential volume growth. The mapping properties of M are discussed for every α,β≠n2 \\alpha,\\beta \\ne {n \\over 2} . Furthermore, let X = X1 × X2 × … Xk where Xi = (ℍni+1, yαi−ni−1dydx) for 1 ≤ i ≤ k. Under the condition αi>ni2 {\\alpha_i} > {{{n_i}} \\over 2} , we also obtained the mapping properties of M.","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/anona-2021-0233","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract Let X be the direct product of Xi where Xi is smooth manifold for 1 ≤ i ≤ k. As is known, if every Xi satisfies the doubling volume condition, then the centered Hardy-Littlewood maximal function M on X is weak (1,1) bounded. In this paper, we consider the product manifold X where at least one Xi does not satisfy the doubling volume condition. To be precise, we first investigate the mapping properties of M when X1 has exponential volume growth and X2 satisfies the doubling condition. Next, we consider the product space of two weighted hyperbolic spaces X1 = (ℍn+1, d, yα−n−1dydx) and X2 = (ℍn+1, d, yβ−n−1dydx) which both have exponential volume growth. The mapping properties of M are discussed for every α,β≠n2 \alpha,\beta \ne {n \over 2} . Furthermore, let X = X1 × X2 × … Xk where Xi = (ℍni+1, yαi−ni−1dydx) for 1 ≤ i ≤ k. Under the condition αi>ni2 {\alpha_i} > {{{n_i}} \over 2} , we also obtained the mapping properties of M.