On the u∞-torsion submodule of prismatic cohomology

IF 1.3 1区 数学 Q1 MATHEMATICS
Shizhang Li, Tongyin Liu
{"title":"On the u∞-torsion submodule of prismatic cohomology","authors":"Shizhang Li, Tongyin Liu","doi":"10.1112/S0010437X23007261","DOIUrl":null,"url":null,"abstract":"We investigate the maximal finite length submodule of the Breuil–Kisin prismatic cohomology of a smooth proper formal scheme over a $p$-adic ring of integers. This submodule governs pathology phenomena in integral $p$-adic cohomology theories. Geometric applications include a control, in low degrees and mild ramifications, of (1) the discrepancy between two naturally associated Albanese varieties in characteristic $p$, and (2) the kernel of the specialization map in $p$-adic étale cohomology. As an arithmetic application, we study the boundary case of the theory due to Fontaine and Laffaille, Fontaine and Messing, and Kato. Also included is an interesting example, generalized from a construction in Bhatt, Morrow and Scholze's work, which illustrates some of our theoretical results being sharp, and negates a question of Breuil.","PeriodicalId":55232,"journal":{"name":"Compositio Mathematica","volume":"159 1","pages":"1607 - 1672"},"PeriodicalIF":1.3000,"publicationDate":"2023-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Compositio Mathematica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1112/S0010437X23007261","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

Abstract

We investigate the maximal finite length submodule of the Breuil–Kisin prismatic cohomology of a smooth proper formal scheme over a $p$-adic ring of integers. This submodule governs pathology phenomena in integral $p$-adic cohomology theories. Geometric applications include a control, in low degrees and mild ramifications, of (1) the discrepancy between two naturally associated Albanese varieties in characteristic $p$, and (2) the kernel of the specialization map in $p$-adic étale cohomology. As an arithmetic application, we study the boundary case of the theory due to Fontaine and Laffaille, Fontaine and Messing, and Kato. Also included is an interesting example, generalized from a construction in Bhatt, Morrow and Scholze's work, which illustrates some of our theoretical results being sharp, and negates a question of Breuil.
关于移动上同调的u∞-扭转子模
我们研究了$p$adic整数环上光滑正规格式的Breuil–Kisin棱镜上同调的最大有限长子模。这个子模块支配积分$p$adic上同调理论中的病理现象。几何应用包括对(1)特征$p$中两个自然相关的Albanese变体之间的差异,以及(2)$p$adicétale上同调中的特化图的核的低程度和温和的控制。作为一个算术应用,我们研究了由Fontaine和Laffaille、Fontaine、Messing和Kato引起的理论的边界情况。还包括一个有趣的例子,从巴特、莫罗和朔尔茨的作品中的一个结构中概括而来,它说明了我们的一些理论结果是尖锐的,并否定了Breuil的一个问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Compositio Mathematica
Compositio Mathematica 数学-数学
CiteScore
2.10
自引率
0.00%
发文量
62
审稿时长
6-12 weeks
期刊介绍: Compositio Mathematica is a prestigious, well-established journal publishing first-class research papers that traditionally focus on the mainstream of pure mathematics. Compositio Mathematica has a broad scope which includes the fields of algebra, number theory, topology, algebraic and differential geometry and global analysis. Papers on other topics are welcome if they are of broad interest. All contributions are required to meet high standards of quality and originality. The Journal has an international editorial board reflected in the journal content.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信