{"title":"Thresholds for the existence of solutions to inhomogeneous elliptic equations with general exponential nonlinearity","authors":"Kazuhiro Ishige, S. Okabe, Tokushi Sato","doi":"10.1515/anona-2021-0220","DOIUrl":null,"url":null,"abstract":"Abstract In this paper we study the existence and the nonexistence of solutions to an inhomogeneous non-linear elliptic problem (P) −Δu+u=F(u)+κμ in RN, u>0 in RN, u(x)→0 as |x|→∞, - \\Delta u + u = F(u) + \\kappa \\mu \\quad {\\kern 1pt} {\\rm in}{\\kern 1pt} \\quad {{\\bf R}^N},\\quad u > 0\\quad {\\kern 1pt} {\\rm in}{\\kern 1pt} \\quad {{\\bf R}^N},\\quad u(x) \\to 0\\quad {\\kern 1pt} {\\rm as}{\\kern 1pt} \\quad |x| \\to \\infty , where F = F(t) grows up (at least) exponentially as t → ∞. Here N ≥ 2, κ > 0, and μ∈Lc1(RN)\\{0} \\mu \\in L_{\\rm{c}}^1({{\\bf R}^N})\\backslash \\{ 0\\} is nonnegative. Then, under a suitable integrability condition on μ, there exists a threshold parameter κ* > 0 such that problem (P) possesses a solution if 0 < κ < κ* and it does not possess no solutions if κ > κ*. Furthermore, in the case of 2 ≤ N ≤ 9, problem (P) possesses a unique solution if κ = κ*.","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/anona-2021-0220","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 2
Abstract
Abstract In this paper we study the existence and the nonexistence of solutions to an inhomogeneous non-linear elliptic problem (P) −Δu+u=F(u)+κμ in RN, u>0 in RN, u(x)→0 as |x|→∞, - \Delta u + u = F(u) + \kappa \mu \quad {\kern 1pt} {\rm in}{\kern 1pt} \quad {{\bf R}^N},\quad u > 0\quad {\kern 1pt} {\rm in}{\kern 1pt} \quad {{\bf R}^N},\quad u(x) \to 0\quad {\kern 1pt} {\rm as}{\kern 1pt} \quad |x| \to \infty , where F = F(t) grows up (at least) exponentially as t → ∞. Here N ≥ 2, κ > 0, and μ∈Lc1(RN)\{0} \mu \in L_{\rm{c}}^1({{\bf R}^N})\backslash \{ 0\} is nonnegative. Then, under a suitable integrability condition on μ, there exists a threshold parameter κ* > 0 such that problem (P) possesses a solution if 0 < κ < κ* and it does not possess no solutions if κ > κ*. Furthermore, in the case of 2 ≤ N ≤ 9, problem (P) possesses a unique solution if κ = κ*.