Thresholds for the existence of solutions to inhomogeneous elliptic equations with general exponential nonlinearity

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Kazuhiro Ishige, S. Okabe, Tokushi Sato
{"title":"Thresholds for the existence of solutions to inhomogeneous elliptic equations with general exponential nonlinearity","authors":"Kazuhiro Ishige, S. Okabe, Tokushi Sato","doi":"10.1515/anona-2021-0220","DOIUrl":null,"url":null,"abstract":"Abstract In this paper we study the existence and the nonexistence of solutions to an inhomogeneous non-linear elliptic problem (P) −Δu+u=F(u)+κμ  in  RN, u>0  in  RN, u(x)→0  as  |x|→∞, - \\Delta u + u = F(u) + \\kappa \\mu \\quad {\\kern 1pt} {\\rm in}{\\kern 1pt} \\quad {{\\bf R}^N},\\quad u > 0\\quad {\\kern 1pt} {\\rm in}{\\kern 1pt} \\quad {{\\bf R}^N},\\quad u(x) \\to 0\\quad {\\kern 1pt} {\\rm as}{\\kern 1pt} \\quad |x| \\to \\infty , where F = F(t) grows up (at least) exponentially as t → ∞. Here N ≥ 2, κ > 0, and μ∈Lc1(RN)\\{0} \\mu \\in L_{\\rm{c}}^1({{\\bf R}^N})\\backslash \\{ 0\\} is nonnegative. Then, under a suitable integrability condition on μ, there exists a threshold parameter κ* > 0 such that problem (P) possesses a solution if 0 < κ < κ* and it does not possess no solutions if κ > κ*. Furthermore, in the case of 2 ≤ N ≤ 9, problem (P) possesses a unique solution if κ = κ*.","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/anona-2021-0220","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 2

Abstract

Abstract In this paper we study the existence and the nonexistence of solutions to an inhomogeneous non-linear elliptic problem (P) −Δu+u=F(u)+κμ  in  RN, u>0  in  RN, u(x)→0  as  |x|→∞, - \Delta u + u = F(u) + \kappa \mu \quad {\kern 1pt} {\rm in}{\kern 1pt} \quad {{\bf R}^N},\quad u > 0\quad {\kern 1pt} {\rm in}{\kern 1pt} \quad {{\bf R}^N},\quad u(x) \to 0\quad {\kern 1pt} {\rm as}{\kern 1pt} \quad |x| \to \infty , where F = F(t) grows up (at least) exponentially as t → ∞. Here N ≥ 2, κ > 0, and μ∈Lc1(RN)\{0} \mu \in L_{\rm{c}}^1({{\bf R}^N})\backslash \{ 0\} is nonnegative. Then, under a suitable integrability condition on μ, there exists a threshold parameter κ* > 0 such that problem (P) possesses a solution if 0 < κ < κ* and it does not possess no solutions if κ > κ*. Furthermore, in the case of 2 ≤ N ≤ 9, problem (P) possesses a unique solution if κ = κ*.
具有一般指数非线性的非齐次椭圆型方程解存在性的阈值
摘要本文研究了一个非齐次非线性椭圆型问题(P)-Δu+u=F(u)+κμ解的存在性和不存在性  在里面  RN, u> 0  在里面  RN, u(x)→0  像  |x|→∞, - \Δu+u=F(u)+\kappa\mu\quad{\kern 1pt}→ ∞. 这里N≥2,κ>0,并且L_{\rm{c}}^1({\bf R}^N})\反斜杠\{0}中的μ∈Lc1(RN)\{0}\mu是非负的。然后,在μ上的一个合适的可积条件下,存在一个阈值参数κ*>0,使得问题(P)在0<κ<κ*时具有解,而在κ>κ*时不具有无解。此外,在2≤N≤9的情况下,如果κ=κ*,则问题(P)具有唯一的解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信