Multiplicity results of nonlocal singular PDEs with critical Sobolev-Hardy exponent

IF 0.8 4区 数学 Q2 MATHEMATICS
A. Daoues, A. Hammami, K. Saoudi
{"title":"Multiplicity results of nonlocal singular PDEs with critical Sobolev-Hardy exponent","authors":"A. Daoues, A. Hammami, K. Saoudi","doi":"10.58997/ejde.2023.10","DOIUrl":null,"url":null,"abstract":" In this article we study a nonlocal equation involving singular and critical Hardy-Sobolev non-linearities, \\[\\displaylines{(-\\Delta_p)^su-\\mu \\frac{|u|^{p-2}u}{|x|^{sp}}=\\lambda u^{-\\alpha}+\\frac{|u|^{p_s^*(t)-2}u}{|x|^t}, \\quad\\hbox{in }\\Omega, \\\\ u>0,\\quad\\text{in }\\Omega,\\\\ \\quad u=0, \\quad\\text{in } \\mathbb{R}^N \\setminus\\Omega }\\] where \\(\\Omega \\subset \\mathbb{R}^N\\) is a bounded domain with Lipschitz boundary and\\( (-\\Delta_p)^s\\)  is the fractional p-Laplacian operator.We combine some variational techniques with a perturbation method to show the existenceof multiple solutions.","PeriodicalId":49213,"journal":{"name":"Electronic Journal of Differential Equations","volume":" ","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2023-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.58997/ejde.2023.10","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

 In this article we study a nonlocal equation involving singular and critical Hardy-Sobolev non-linearities, \[\displaylines{(-\Delta_p)^su-\mu \frac{|u|^{p-2}u}{|x|^{sp}}=\lambda u^{-\alpha}+\frac{|u|^{p_s^*(t)-2}u}{|x|^t}, \quad\hbox{in }\Omega, \\ u>0,\quad\text{in }\Omega,\\ \quad u=0, \quad\text{in } \mathbb{R}^N \setminus\Omega }\] where \(\Omega \subset \mathbb{R}^N\) is a bounded domain with Lipschitz boundary and\( (-\Delta_p)^s\)  is the fractional p-Laplacian operator.We combine some variational techniques with a perturbation method to show the existenceof multiple solutions.
具有临界Sobolev-Hardy指数的非局部奇异偏微分方程的多重性结果
本文研究了一个包含奇异和临界Hardy-Sobolev非线性的非局部方程|^{p-2}u}{|x|^{sp}}=\lambda u^{-\alpha}+\frac{|u|^(p_s^*(t分数p-拉普拉斯算子。我们将一些变分技术与摄动方法相结合,证明了多重解的存在性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Electronic Journal of Differential Equations
Electronic Journal of Differential Equations MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
1.50
自引率
14.30%
发文量
1
审稿时长
3 months
期刊介绍: All topics on differential equations and their applications (ODEs, PDEs, integral equations, delay equations, functional differential equations, etc.) will be considered for publication in Electronic Journal of Differential Equations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信