Mohammad Zamani Khaneghah, Mohamad Alzayed, H. Chaoui
{"title":"Fault Detection and Diagnosis of the Electric Motor Drive and Battery System of Electric Vehicles","authors":"Mohammad Zamani Khaneghah, Mohamad Alzayed, H. Chaoui","doi":"10.3390/machines11070713","DOIUrl":null,"url":null,"abstract":"Fault detection and diagnosis (FDD) is of utmost importance in ensuring the safety and reliability of electric vehicles (EVs). The EV’s power train and energy storage, namely the electric motor drive and battery system, are critical components that are susceptible to different types of faults. Failure to detect and address these faults in a timely manner can lead to EV malfunctions and potentially catastrophic accidents. In the realm of EV applications, Permanent Magnet Synchronous Motors (PMSMs) and lithium-ion battery packs have garnered significant attention. Consequently, fault detection methods for PMSMs and their drives, as well as for lithium-ion battery packs, have become a prominent area of research. An effective FDD approach must possess qualities such as accuracy, speed, sensitivity, and cost-effectiveness. Traditional FDD techniques include model-based and signal-based methods. However, data-driven approaches, including machine learning-based methods, have recently gained traction due to their promising capabilities in fault detection. This paper aims to provide a comprehensive overview of potential faults in EV motor drives and battery systems, while also reviewing the latest state-of-the-art research in EV fault detection. The information presented herein can serve as a valuable reference for future endeavors in this field.","PeriodicalId":48519,"journal":{"name":"Machines","volume":" ","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2023-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machines","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/machines11070713","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 1
Abstract
Fault detection and diagnosis (FDD) is of utmost importance in ensuring the safety and reliability of electric vehicles (EVs). The EV’s power train and energy storage, namely the electric motor drive and battery system, are critical components that are susceptible to different types of faults. Failure to detect and address these faults in a timely manner can lead to EV malfunctions and potentially catastrophic accidents. In the realm of EV applications, Permanent Magnet Synchronous Motors (PMSMs) and lithium-ion battery packs have garnered significant attention. Consequently, fault detection methods for PMSMs and their drives, as well as for lithium-ion battery packs, have become a prominent area of research. An effective FDD approach must possess qualities such as accuracy, speed, sensitivity, and cost-effectiveness. Traditional FDD techniques include model-based and signal-based methods. However, data-driven approaches, including machine learning-based methods, have recently gained traction due to their promising capabilities in fault detection. This paper aims to provide a comprehensive overview of potential faults in EV motor drives and battery systems, while also reviewing the latest state-of-the-art research in EV fault detection. The information presented herein can serve as a valuable reference for future endeavors in this field.
期刊介绍:
Machines (ISSN 2075-1702) is an international, peer-reviewed journal on machinery and engineering. It publishes research articles, reviews, short communications and letters. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. Full experimental and/or methodical details must be provided. There are, in addition, unique features of this journal: *manuscripts regarding research proposals and research ideas will be particularly welcomed *electronic files or software regarding the full details of the calculation and experimental procedure - if unable to be published in a normal way - can be deposited as supplementary material Subject Areas: applications of automation, systems and control engineering, electronic engineering, mechanical engineering, computer engineering, mechatronics, robotics, industrial design, human-machine-interfaces, mechanical systems, machines and related components, machine vision, history of technology and industrial revolution, turbo machinery, machine diagnostics and prognostics (condition monitoring), machine design.