Hybridized KNN-Random Forest Algorithm: Image Demosaicing with Reduced Artifacts

IF 1.2 4区 综合性期刊 Q3 MULTIDISCIPLINARY SCIENCES
Gurjot Kaur Walia, Jagroop Singh Sidhu
{"title":"Hybridized KNN-Random Forest Algorithm: Image Demosaicing with Reduced Artifacts","authors":"Gurjot Kaur Walia,&nbsp;Jagroop Singh Sidhu","doi":"10.1007/s40009-022-01165-z","DOIUrl":null,"url":null,"abstract":"<div><p>Demosaicing is a necessary step in the image processing process in many digital colour cameras. The demosaicing approach creates a full-colour image from a single-sensor array raw image enclosed with a colour filter array. This work proposes a hybrid technique for automatically identifying CFA patterns and demosaicing methods from noise variance distributions. The image interpolation is completed by using the previously demonstrated G, R, and B planes using five techniques, viz. linear, nearest, cubic, rational, v4 for 7 × 7 kernel size. The degree of sharpening to be tested on each image was determined using fundamental experimental findings. The simulation findings show that the KNN and random forest algorithms improve the efficiency of the original images by reducing false colours. Furthermore, the suggested hybrid technique outperforms earlier demosaicing algorithms in terms of average PSNR measurement. Also, the results for structural similarity index and mean structural similarity index justify the significance of reported work.\n</p></div>","PeriodicalId":717,"journal":{"name":"National Academy Science Letters","volume":"45 6","pages":"517 - 520"},"PeriodicalIF":1.2000,"publicationDate":"2022-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40009-022-01165-z.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"National Academy Science Letters","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1007/s40009-022-01165-z","RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Demosaicing is a necessary step in the image processing process in many digital colour cameras. The demosaicing approach creates a full-colour image from a single-sensor array raw image enclosed with a colour filter array. This work proposes a hybrid technique for automatically identifying CFA patterns and demosaicing methods from noise variance distributions. The image interpolation is completed by using the previously demonstrated G, R, and B planes using five techniques, viz. linear, nearest, cubic, rational, v4 for 7 × 7 kernel size. The degree of sharpening to be tested on each image was determined using fundamental experimental findings. The simulation findings show that the KNN and random forest algorithms improve the efficiency of the original images by reducing false colours. Furthermore, the suggested hybrid technique outperforms earlier demosaicing algorithms in terms of average PSNR measurement. Also, the results for structural similarity index and mean structural similarity index justify the significance of reported work.

杂化knn -随机森林算法:减少伪影的图像去马赛克
在许多数码彩色相机中,去马赛克是图像处理过程中的一个必要步骤。反马赛克的方法创建一个全彩色图像从一个单一的传感器阵列原始图像封闭的彩色滤光器阵列。这项工作提出了一种自动识别CFA模式和从噪声方差分布中去马赛克方法的混合技术。图像插值使用前面演示的G, R和B平面,使用5种技术,即线性,最近邻,三次,有理,v4的7 × 7核大小完成。锐化程度要测试的每个图像是确定使用基本的实验结果。仿真结果表明,KNN和随机森林算法通过减少假色,提高了原始图像的效率。此外,所建议的混合技术在平均PSNR测量方面优于早期的去马赛克算法。结构相似度指数和平均结构相似度指数的结果也证明了所报道工作的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
National Academy Science Letters
National Academy Science Letters 综合性期刊-综合性期刊
CiteScore
2.20
自引率
0.00%
发文量
86
审稿时长
12 months
期刊介绍: The National Academy Science Letters is published by the National Academy of Sciences, India, since 1978. The publication of this unique journal was started with a view to give quick and wide publicity to the innovations in all fields of science
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信