M. AL-Oudat, Mohammad Azzeh, H. Qattous, A. Altamimi, S. Alomari
{"title":"Image Segmentation based Deep Learning for Biliary Tree Diagnosis","authors":"M. AL-Oudat, Mohammad Azzeh, H. Qattous, A. Altamimi, S. Alomari","doi":"10.14704/web/v19i1/web19123","DOIUrl":null,"url":null,"abstract":"Dilation of biliary tree can be an indicator of several diseases such as stones, tumors, benign strictures, and some cases cancer. This dilation can be due to many reasons such as gallstones, inflammation of the bile ducts, trauma, injury, severe liver damage. Automatic measurement of the biliary tree in magnetic resonance images (MRI) is helpful to assist hepatobiliary surgeons for minimally invasive surgery. In this paper, we proposed a model to segment biliary tree MRI images using a Fully Convolutional Neural (FCN) network. Based on the extracted area, seven features that include Entropy, standard deviation, RMS, kurtosis, skewness, Energy and maximum are computed. A database of images from King Hussein Medical Center (KHMC) is used in this work, containing 800 MRI images; 400 cases with normal biliary tree; and 400 images with dilated biliary tree labeled by surgeons. Once the features are extracted, four classifiers (Multi-Layer perceptron neural network, support vector machine, k-NN and decision tree) are applied to predict the status of patient in terms of biliary tree (normal or dilated). All classifiers show high accuracy in terms of Area Under Curve except support vector machine. The contributions of this work include introducing a fully convolutional network for biliary tree segmentation, additionally scientifically correlate the extracted features with the status of biliary tree (normal or dilated) that have not been previously investigated in the literature from MRI images for biliary tree status determinations.","PeriodicalId":35441,"journal":{"name":"Webology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Webology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14704/web/v19i1/web19123","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Social Sciences","Score":null,"Total":0}
引用次数: 1
Abstract
Dilation of biliary tree can be an indicator of several diseases such as stones, tumors, benign strictures, and some cases cancer. This dilation can be due to many reasons such as gallstones, inflammation of the bile ducts, trauma, injury, severe liver damage. Automatic measurement of the biliary tree in magnetic resonance images (MRI) is helpful to assist hepatobiliary surgeons for minimally invasive surgery. In this paper, we proposed a model to segment biliary tree MRI images using a Fully Convolutional Neural (FCN) network. Based on the extracted area, seven features that include Entropy, standard deviation, RMS, kurtosis, skewness, Energy and maximum are computed. A database of images from King Hussein Medical Center (KHMC) is used in this work, containing 800 MRI images; 400 cases with normal biliary tree; and 400 images with dilated biliary tree labeled by surgeons. Once the features are extracted, four classifiers (Multi-Layer perceptron neural network, support vector machine, k-NN and decision tree) are applied to predict the status of patient in terms of biliary tree (normal or dilated). All classifiers show high accuracy in terms of Area Under Curve except support vector machine. The contributions of this work include introducing a fully convolutional network for biliary tree segmentation, additionally scientifically correlate the extracted features with the status of biliary tree (normal or dilated) that have not been previously investigated in the literature from MRI images for biliary tree status determinations.
WebologySocial Sciences-Library and Information Sciences
自引率
0.00%
发文量
374
审稿时长
10 weeks
期刊介绍:
Webology is an international peer-reviewed journal in English devoted to the field of the World Wide Web and serves as a forum for discussion and experimentation. It serves as a forum for new research in information dissemination and communication processes in general, and in the context of the World Wide Web in particular. Concerns include the production, gathering, recording, processing, storing, representing, sharing, transmitting, retrieving, distribution, and dissemination of information, as well as its social and cultural impacts. There is a strong emphasis on the Web and new information technologies. Special topic issues are also often seen.