Lithium-ion conductivity and crystallization temperature of multicomponent oxide glass electrolytes

Q1 Physics and Astronomy
Kenji Nagao, Manari Shigeno, Ayane Inoue, Minako Deguchi, Hiroe Kowada, Chie Hotehama, Atsushi Sakuda, Masahiro Tatsumisago, Akitoshi Hayashi
{"title":"Lithium-ion conductivity and crystallization temperature of multicomponent oxide glass electrolytes","authors":"Kenji Nagao,&nbsp;Manari Shigeno,&nbsp;Ayane Inoue,&nbsp;Minako Deguchi,&nbsp;Hiroe Kowada,&nbsp;Chie Hotehama,&nbsp;Atsushi Sakuda,&nbsp;Masahiro Tatsumisago,&nbsp;Akitoshi Hayashi","doi":"10.1016/j.nocx.2022.100089","DOIUrl":null,"url":null,"abstract":"<div><p>Lithium-ion-conducting oxide glass electrolytes in the multicomponent systems Li<sub>2</sub>O–B<sub>2</sub>O<sub>3</sub>–SiO<sub>2</sub>–P<sub>2</sub>O<sub>5</sub>-LiX (LiX = Li<sub>3</sub>N, Li<sub>2</sub>SO<sub>4</sub>, Li<sub>2</sub>CO<sub>3</sub>, and LiI) were synthesized using a mechanochemical technique. The crystallization temperature and ionic conductivity of multicomponent glasses with added lithium salts or Li<sub>3</sub>N were evaluated. Because the crystallization temperature is a measure of the ability of glasses to resist crystallization at high temperature, glasses with high conductivity and high crystallization temperature are desirable electrolytes. In this study, the lithium-ion conductivity of the glasses was found to be correlated with the crystallization temperature, and it was difficult to increase both the conductivity and crystallization temperature. The addition of lithium salts (Li<sub>2</sub>SO<sub>4</sub>, Li<sub>2</sub>CO<sub>3</sub>, and LiI) increased the conductivity but decreased the crystallization temperature. Nitrogen doping by the addition of Li<sub>3</sub>N improved both these properties of the oxide glass electrolyte. Therefore, oxynitride glasses are desirable electrolytes owing to their thermal stability and lithium-ion conductivity.</p></div>","PeriodicalId":37132,"journal":{"name":"Journal of Non-Crystalline Solids: X","volume":"14 ","pages":"Article 100089"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590159122000097/pdfft?md5=699fb8805ed31e44fb3827b0ee7944d7&pid=1-s2.0-S2590159122000097-main.pdf","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Non-Crystalline Solids: X","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590159122000097","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 3

Abstract

Lithium-ion-conducting oxide glass electrolytes in the multicomponent systems Li2O–B2O3–SiO2–P2O5-LiX (LiX = Li3N, Li2SO4, Li2CO3, and LiI) were synthesized using a mechanochemical technique. The crystallization temperature and ionic conductivity of multicomponent glasses with added lithium salts or Li3N were evaluated. Because the crystallization temperature is a measure of the ability of glasses to resist crystallization at high temperature, glasses with high conductivity and high crystallization temperature are desirable electrolytes. In this study, the lithium-ion conductivity of the glasses was found to be correlated with the crystallization temperature, and it was difficult to increase both the conductivity and crystallization temperature. The addition of lithium salts (Li2SO4, Li2CO3, and LiI) increased the conductivity but decreased the crystallization temperature. Nitrogen doping by the addition of Li3N improved both these properties of the oxide glass electrolyte. Therefore, oxynitride glasses are desirable electrolytes owing to their thermal stability and lithium-ion conductivity.

多组分氧化物玻璃电解质的锂离子电导率和结晶温度
采用机械化学方法合成了多组分体系Li2O-B2O3-SiO2-P2O5-LiX (LiX = Li3N, Li2SO4, Li2CO3和LiI)中的锂离子导电氧化物玻璃电解质。考察了加入锂盐或Li3N后的多组分玻璃的结晶温度和离子电导率。因为结晶温度是衡量玻璃在高温下抗结晶能力的指标,所以电导率高、结晶温度高的玻璃是理想的电解质。本研究发现,玻璃的锂离子电导率与结晶温度相关,难以同时提高电导率和结晶温度。锂盐(Li2SO4、Li2CO3和LiI)的加入提高了电导率,但降低了结晶温度。通过添加Li3N来掺杂氮,提高了氧化玻璃电解质的这两种性能。因此,氮化氧玻璃由于其热稳定性和锂离子导电性是理想的电解质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Non-Crystalline Solids: X
Journal of Non-Crystalline Solids: X Materials Science-Materials Chemistry
CiteScore
3.20
自引率
0.00%
发文量
50
审稿时长
76 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信