Spatial trend analysis of gridded temperature data at varying spatial scales

Q1 Mathematics
O. Haug, T. Thorarinsdottir, S. Sørbye, C. Franzke
{"title":"Spatial trend analysis of gridded temperature data at varying spatial scales","authors":"O. Haug, T. Thorarinsdottir, S. Sørbye, C. Franzke","doi":"10.5194/ascmo-6-1-2020","DOIUrl":null,"url":null,"abstract":"Abstract. Classical assessments of trends in gridded temperature data perform\nindependent evaluations across the grid, thus, ignoring spatial correlations\nin the trend estimates. In particular, this affects assessments of trend\nsignificance as evaluation of the collective significance of individual tests\nis commonly neglected. In this article we build a space–time hierarchical\nBayesian model for temperature anomalies where the trend coefficient is\nmodelled by a latent Gaussian random field. This enables us to calculate\nsimultaneous credible regions for joint significance assessments. In a case\nstudy, we assess summer season trends in 65 years of gridded temperature data\nover Europe. We find that while spatial smoothing generally results in larger\nregions where the null hypothesis of no trend is rejected, this is not the\ncase for all subregions.\n","PeriodicalId":36792,"journal":{"name":"Advances in Statistical Climatology, Meteorology and Oceanography","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Statistical Climatology, Meteorology and Oceanography","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5194/ascmo-6-1-2020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 5

Abstract

Abstract. Classical assessments of trends in gridded temperature data perform independent evaluations across the grid, thus, ignoring spatial correlations in the trend estimates. In particular, this affects assessments of trend significance as evaluation of the collective significance of individual tests is commonly neglected. In this article we build a space–time hierarchical Bayesian model for temperature anomalies where the trend coefficient is modelled by a latent Gaussian random field. This enables us to calculate simultaneous credible regions for joint significance assessments. In a case study, we assess summer season trends in 65 years of gridded temperature data over Europe. We find that while spatial smoothing generally results in larger regions where the null hypothesis of no trend is rejected, this is not the case for all subregions.
不同空间尺度下网格温度数据的空间趋势分析
摘要网格化温度数据趋势的经典评估在整个网格上进行依赖评估,因此忽略了趋势估计中的空间相关性。特别是,这影响了对趋势显著性的评估,因为对单个测试的集体显著性的评估通常被忽视。在本文中,我们建立了温度异常的时空层次贝叶斯模型,其中趋势系数由潜在高斯随机场建模。这使我们能够计算联合显著性评估的同时可信区域。在一个案例研究中,我们评估了65年来欧洲网格化温度数据的夏季趋势。我们发现,虽然空间平滑通常会导致更大的区域,其中没有趋势的零假设被拒绝,但并非所有子区域都是如此。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in Statistical Climatology, Meteorology and Oceanography
Advances in Statistical Climatology, Meteorology and Oceanography Earth and Planetary Sciences-Atmospheric Science
CiteScore
4.80
自引率
0.00%
发文量
9
审稿时长
26 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信