Second Law Analysis of MHD Forced Convective Nanoliquid Flow Through a Two-Dimensional Channel

IF 1 Q4 ENGINEERING, MECHANICAL
Rached Miri, M. A. Abbassi, M. Ferhi, R. Djebali
{"title":"Second Law Analysis of MHD Forced Convective Nanoliquid Flow Through a Two-Dimensional Channel","authors":"Rached Miri, M. A. Abbassi, M. Ferhi, R. Djebali","doi":"10.2478/ama-2022-0050","DOIUrl":null,"url":null,"abstract":"Abstract The present study deals with fluid flow, heat transfer and entropy generation in a two-dimensional channel filled with Cu–water nanoliquid and containing a hot block. The nanoliquid flow is driven along the channel by a constant velocity and a cold temperature at the inlet, and the partially heated horizontal walls. The aim of this work is to study the influence of the most important parameters such as nanoparticle volume fraction (0%≤ϕ≤4%), nanoparticle diameter (5 nm≤dp≤55 nm), Reynolds number (50≤Re≤200), Hartmann number (0≤Ha≤90), magnetic field inclination angle (0≤γ≤π) and Brownian motion on the hydrodynamic and thermal characteristics and entropy generation. We used the lattice Boltzmann method (LBM: SRT-BGK model) to solve the continuity, momentum and energy equations. The obtained results show that the maximum value of the average Nusselt number is found for case (3) when the hot block is placed between the two hot walls. The minimum value is calculated for case (2) when the hot block is placed between the two insulated walls. The increase in Reynolds and Hartmann numbers enhances the heat transfer and the total entropy generation. In addition, the nanoparticle diameter increase reduces the heat transfer and the irreversibility, the impact of the magnetic field inclination angle on the heat transfer and the total entropy generation is investigated, and the Brownian motion enhances the heat transfer and the total entropy generation.","PeriodicalId":44942,"journal":{"name":"Acta Mechanica et Automatica","volume":"16 1","pages":"417 - 431"},"PeriodicalIF":1.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mechanica et Automatica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/ama-2022-0050","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 1

Abstract

Abstract The present study deals with fluid flow, heat transfer and entropy generation in a two-dimensional channel filled with Cu–water nanoliquid and containing a hot block. The nanoliquid flow is driven along the channel by a constant velocity and a cold temperature at the inlet, and the partially heated horizontal walls. The aim of this work is to study the influence of the most important parameters such as nanoparticle volume fraction (0%≤ϕ≤4%), nanoparticle diameter (5 nm≤dp≤55 nm), Reynolds number (50≤Re≤200), Hartmann number (0≤Ha≤90), magnetic field inclination angle (0≤γ≤π) and Brownian motion on the hydrodynamic and thermal characteristics and entropy generation. We used the lattice Boltzmann method (LBM: SRT-BGK model) to solve the continuity, momentum and energy equations. The obtained results show that the maximum value of the average Nusselt number is found for case (3) when the hot block is placed between the two hot walls. The minimum value is calculated for case (2) when the hot block is placed between the two insulated walls. The increase in Reynolds and Hartmann numbers enhances the heat transfer and the total entropy generation. In addition, the nanoparticle diameter increase reduces the heat transfer and the irreversibility, the impact of the magnetic field inclination angle on the heat transfer and the total entropy generation is investigated, and the Brownian motion enhances the heat transfer and the total entropy generation.
二维通道MHD强制对流纳米液体流动的第二定律分析
摘要本文研究了含热块的cu -水纳米液体填充二维通道中的流体流动、传热和熵生成。纳米液体流动是由入口的恒定速度和低温以及部分加热的水平壁面驱动的。研究纳米颗粒体积分数(0%≤φ≤4%)、纳米颗粒直径(5 nm≤dp≤55 nm)、雷诺数(50≤Re≤200)、哈特曼数(0≤Ha≤90)、磁场倾角(0≤γ≤π)和布朗运动等重要参数对流体动力和热特性及熵产的影响。我们使用晶格玻尔兹曼方法(LBM: SRT-BGK模型)来求解连续性、动量和能量方程。结果表明,当热块置于两热壁之间时,平均努塞尔数在情形(3)中达到最大值。当热块放置在两个隔热墙之间时,计算情况(2)的最小值。雷诺数和哈特曼数的增加增加了传热和总熵的产生。此外,纳米颗粒直径的增大减小了传热和不可逆性,研究了磁场倾角对传热和总熵产的影响,布朗运动增强了传热和总熵产。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Acta Mechanica et Automatica
Acta Mechanica et Automatica ENGINEERING, MECHANICAL-
CiteScore
1.40
自引率
0.00%
发文量
45
审稿时长
30 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信